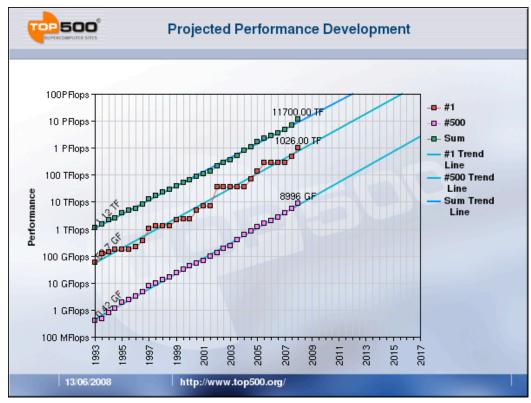


Exa & Yotta Scale Data SC'08 Panel November 21 2008, Austin, TX

Garth Gibson Carnegie Mellon University and Panasas Inc.

SciDAC Petascale Data Storage Institute (PDSI)


www.pdsi-scidac.org

Carnegie Mellon Parallel Data Laboratory

Charting the Path thru Exa- to Yotta-scale

- Top500.org scaling 100%/yr; Exa in 2018, Zetta in 2028, Yotta in 2038 •
 - Hard to make engineering predictions out 10 years, but 30 years?

Carnegie Mellon Parallel Data Laboratory

Roadrunner

EST. 1943

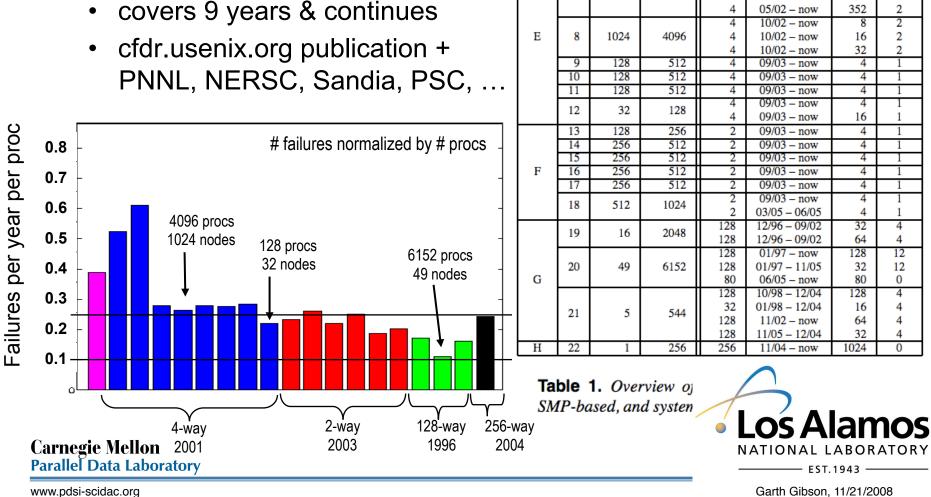
First to break the "petaflop" barrier

At 3:30 a.m. on May 26, 2008, Memorial Day, the "Roadrunner" supercomputer exceeded a sustained speed of 1 petaflop/s, or 1 million billion calculations per second. The sustained performance makes Roadrunner more than twice as fast as the current number 1 system on the TOP500 list. The best sustained performance to date is 74.5% efficiency, 1.026 petaflop/s.

www.pdsi-scidac.org

Storage Scaling

- Trends are quoted in capacity & performance
- Balance calls for linear scaling with FLOPS
- Disk capacity grows near Moore's Law
 - Disk capacity track compute speed
 - Parallelism grows no better or worse than compute
- But disk bandwidth +20%/yr < Moore's Law
 - Parallelism for BW grows faster than compute!
 - Revisit reason for BW balance: fault tolerance
- And random access? +7%/yr is nearly no growth
 - Coupled with BW parallelism, good growth
 - But new workloads, analytics, more access intensive
 - Solid state storage looks all but inevitable here



Parallel Data Laboratory

Carnegie Mellon

Fault Data & Trends

- Los Alamos root cause logs
 - 22 clusters & 5,000 nodes
 - covers 9 years & continues

(I) High-level system information

Nodes

HW

Α

В

C

D

ID

(II) Information per node category

Mem

(GB)

NICs

Production

Time

N/A - 12/99

N/A - 12/03

N/A - 04/03

04/01 - now

12/02 - now

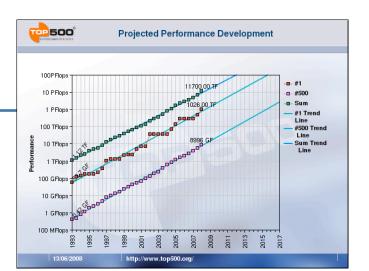
12/01 - now

09/01 - 01/02

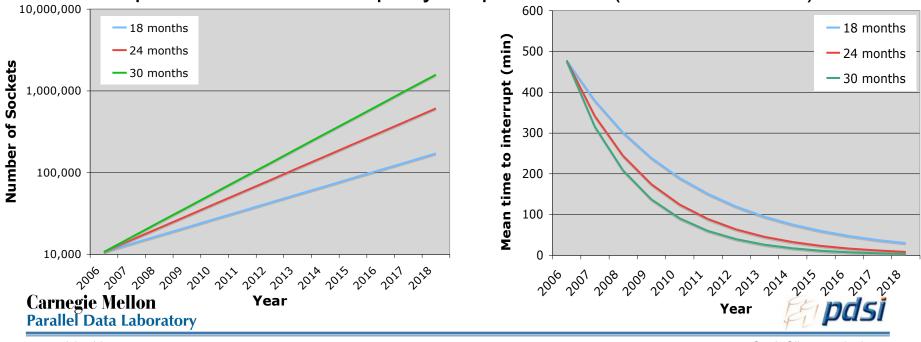
05/02 - now

05/02 - now

05/02 - now


Procs

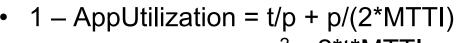
/node

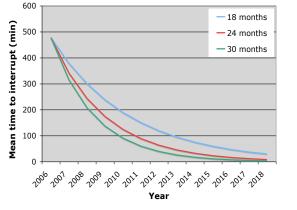

Procs

Projections: More Failures

- Con't top500.org 2X annually
 - 1 PF Roadrunner, May 2008
- Cycle time flat, but more of them
 - Moore's law: 2X cores/chip in 18 mos

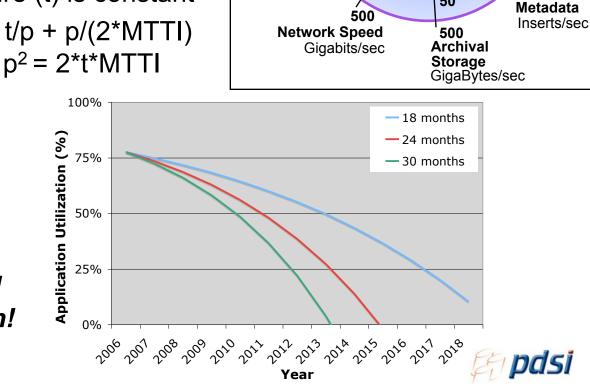
- # sockets, 1/MTTI = failure rate up 25%-50% per year
 - Optimistic 0.1 failures per year per socket (vs. historic 0.25)




www.pdsi-scidac.org

Garth Gibson, 11/21/2008

Fault Tolerance Challenge


- Periodic (p) pause to checkpoint (t)
 - Major need for storage bandwidth
- Balanced systems
 - Storage speed tracks FLOPS, memory GigaBytes/sec so checkpoint capture (t) is constant

 but dropping MTTI kills app utilization!

Carnegie Mellon Parallel Data Laboratory

Memory 2,500 TeraBytes

50

5,000 500

Disk

Parallel

I/O

PetaByte

250

50

50

Everything Must Scale with Compute

Computing Speed

500

50

5 5

5

50

5 .5

5,000TFLOP/s

04

200

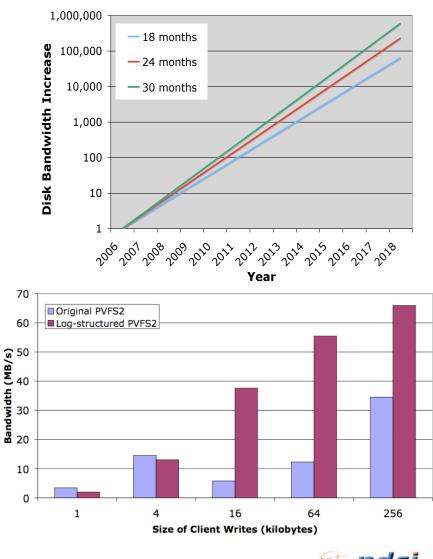
2.000

200

08

Year

2012

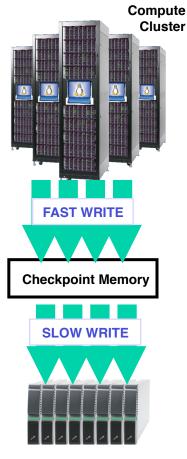

102 103 105

20.000

www.pdsi-scidac.org

Fault Tolerance Drives Bandwidth

- More storage bandwidth?
 - disk speed 1.2X/yr
 - # disks +67%/y just for balance !
 - to also counter MTTI
 - # disks +130%/yr !
 - Little appetite for the cost
- N-1 checkpoints hurt BW
 - Concurrent strided write
 - Will fix with internal file structure: write optimized
 - See Zest, ADIOS,


www.pdsi-scidac.org

Carnegie Mellon

Parallel Data Laboratory

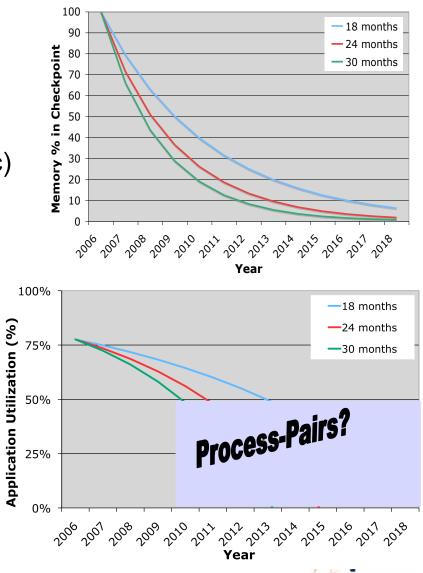
Garth Gibson, 11/21/2008

Alternative: Specialize Checkpoints

Disk Storage Devices

- Stage checkpoint through fast memory
- Cost of dedicated memory large fraction of total
- Cheaper SSD (flash?) now bandwidth limited
- There is hope: 1 flash chip == 1 disk BW

Carnegie Mellon Parallel Data Laboratory


pdsi

www.pdsi-scidac.org

Garth Gibson, 11/21/2008

Application Level Alternatives

- Compress checkpoints!
 - plenty of cycles available
 - smaller fraction of memory each year (application specific)
 - 25-50% smaller per year
- Classic enterprise answer:
 process pairs duplication
 - Flat 50% efficiency cost, plus message duplication

Garth Gibson, 11/21/2008

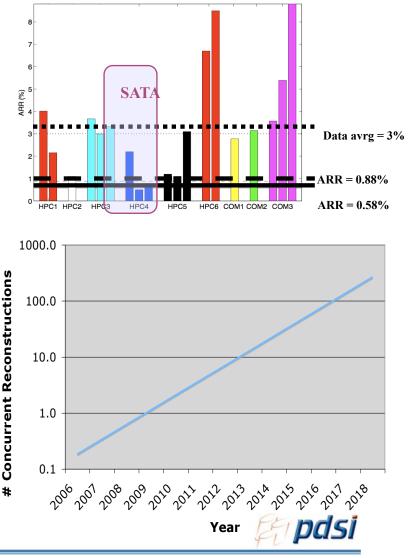
Carnegie Mellon Parallel Data Laboratory

www.pdsi-scidac.org

Storage Suffers Failures Too

		Type of drive	Count	Duration
Pittsburgh Supercomputing Center	HPC1	18GB 10K RPM SCSI 36GB 10K RPM SCSI	3,400	5 yrs
• LOS Alamos NATIONAL LABORATORY EST.1943	HPC2	36GB 10K RPM SCSI	520	2.5 yrs
Supercomputing X	HPC3	15K RPM SCSI 15K RPM SCSI 7.2K RPM SATA	14,208	1 yr
Various HPCs	HPC4	250GB SATA 500GB SATA 400GB SATA	13,634	3 yrs
Internet services Y	COM1	10K RPM SCSI	26,734	1 month
	COM2	15K RPM SCSI	39,039	1.5 yrs
	COM3	10K RPM FC-AL 10K RPM FC-AL 10K RPM FC-AL 10K RPM FC-AL	3,700	1 yr

Storage Failure Recovery is On-the-fly

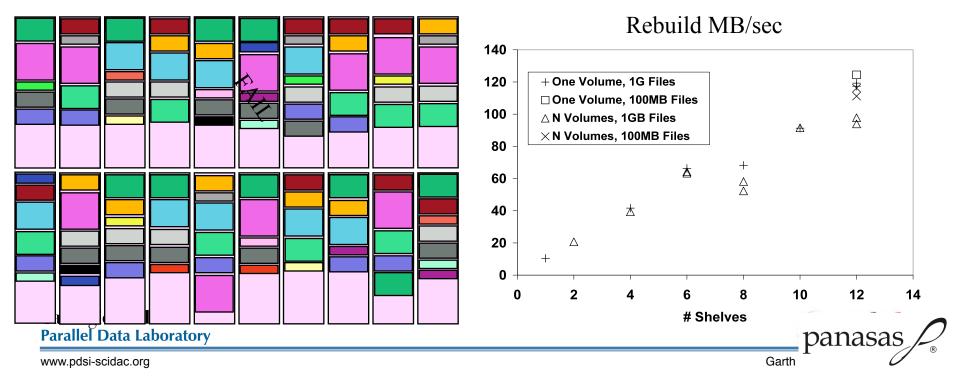

- Scalable performance = more disks
- But disks are getting bigger
- Recovery per failure increasing
- Hours to days on disk arrays
- Consider # concurrent disk recoveries e.g. 10,000 disks

3% per year replacement rate

1+ day recovery each

Constant state of recovering ?

- Maybe soon 100s of concurrent recoveries (at all times!)
- Design normal case for many failures (huge challenge!)


www.pdsi-scidac.org

Carnegie Mellon

Parallel Data Laboratory

Parallel Scalable Repair

- Defer the problem by making failed disk repair a parallel app
- File replication and, more recently, object RAID can scale repair
 - "decluster" redundancy groups over all disks (mirror or RAID)
 - use all disks for every repair, faster is less vulnerable
- Object (chunk of a file) storage architecture dominating at scale PanFS, Lustre, PVFS, ... GFS, HDFS, ... Centera, ...

Scaling Exa- to Yotta-Scale

- Exascale capacity parallelism not worse than compute parallelism
 - But internal fault tolerance harder for storage than compute
- Exascale bandwidth a big problem, but dominated by checkpoint
 - Specialize checkpoint solutions to reduce stress
 - Log-structured files, dedicated devices, Flash memory
 - Application alternatives: state compression, process pairs
- Long term: 20%/yr bandwidth growth serious concern
 - Primary problem is economic: what is value of data vs compute?
- Long term: 7%/yr access rate growth threatens market size
 - Solid state will replace disk for small random access

Parallel Data Laboratory

Carnegie Mellon

SciDAC Petascale Data Storage Institute

pasi

- High Performance Storage Expertise & Experience
 - Carnegie Mellon University, Garth Gibson, lead PI
 - U. of California, Santa Cruz, Darrell Long
 - U. of Michigan, Ann Arbor, Peter Honeyman
 - Lawrence Berkeley National Lab, William Kramer
 - Oak Ridge National Lab, Phil Roth
 - Pacific Northwest National Lab, Evan Felix
 - Los Alamos National Lab, Gary Grider
 - Sandia National Lab, Lee Ward

