
Metadata Crawling
• Based on differencing file system snapshots
• Uses WAFL for snapshots
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Problem
• Modern fIle systems can store petabytes of data and billions of files
• Users waste time finding and organizing files
• Administrator decisions are more complicated
➨ Need a way to quickly find and understand the data being stored

Searching file metadata
• Inode fields and extended attributes contain useful information
• Can address many user questions

- "Where are the document files I modified most recently?"
- "Which files in my home directory should be deleted?"

• Can address many administrator questions
- "Which system configuration files were changed last week?"
- "Which user home directories have grown most in the past 6 months?"

• Existing file search tools lack required scalability
- Focus on content-based search, rely on DBMS for metadata search
- Content search cannot address many important questions
- DBMS are ill-suited for metadata characteristics

Query characteristics
• File system namespace locality

- Files that satisfy a query are often clustered in the namespace
- Due to clustering of metadata attribute values

• Locality of reference
- Like files, only a small set of namespace locations are popular

 - Most namespace locations are infrequently searched
• Selectivity

- Queries should try to refine results to a small set of files
 - Too many results are not focused and thus not very useful

Metadata Characteristics
We analyzed metadata traces collected from file servers within NetApp

 
Spatial locality of attribute values:
 • Attributes values tend to be clustered in a few sub-trees

• Locality ratio: The percentage of directories that contain files with a
particular attribute value compared to all directories

• Ratios for the ext, size, owner and ctime for the 32 most frequent
attribute values

 • All ratios are below 1% meaning these attributes occur in fewer
than 1% of directories

Skewed distribution of attribute values:
• Attribute value distributions tend to be highly skewed
• Data distribution: The highest ranked (most popular) attribute

values are plotted against their file count percentage (log-log scale)

                   

• 80% of files have one of 20 popular extensions, while the other 20%
account for the other 4000 extensions, following a power law distribution

• The cartesian product of top 20 ext and size values is very small
• Attribute combinations are more evenly distributed

Conclusions
• Growing amounts of data are making data management more difficult
• Metadata search can address many data management challenges
• Spyglass exploits metadata characteristics for scalable metadata search

- Achieves up to three orders of magnitude performance improvement
compared to DBMS solutions

Setup
• Compare to two popular database management systems (DBMSs)

- System X and System Y
• Use our real-world metadata traces
• Compare to index-based DBMS design

- Create B+-tree index on each column
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Hierarchical Partitioning
• Index is partitioned based on file system hierarchy

- Each partition is a sub-tree partition
- Each partition is stored sequentially on-disk

• Spyglass index is a set of sub-tree partitions, each with a:
- Partition index: An index of files in the sub-tree
- Partition metadata: Information about indexed files

• A partition cache uses LRU to manage partitions
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Design Principles
• Should be sensitive to the file system's hierarchy

- Exploit hierarchy locality properties
• Query performance more important than consistency

- Most queries do not need strict consistency
• Metadata history enables important queries

- Storage trends
- State changes

• Do not require additional hardware
- May be very expensive for large-scale systems

Partition Index and Metadata
• Partition index is a KD-tree
• Partition metadata contains:

- Summary information
- Version vector
- Signature files

- Test to find if partition index has files relevant to a query
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Design Overview
• Two major components:

- Spyglass index which stores and indexes metadata
- A crawler that extracts metadata from the storage system

• Two key concepts:
- Hierarchical partitioning: Breaks index into partitions based

on the file system hierarchy
- Partition versioning: Index updates are batched and treated

as new incremental versions

Partition Versioning
• Each sub-tree partition is versioned separately
• Allows time-traveling queries and simplifies updates
• Composed of a baseline index and incremental indexes

- Baseline index is a normal partition index at T0

- Incremental index contains metadata changes to roll query
results from Tn-1 to Tn

• Old versions can be sacrificed for performance
- Collapsing versions means combining baseline

and incremental indexes
- Checkpointing saves landmark versions for later
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Space Overhead
• Compares on-disk space required

- DBMS must store table and build indexes
• Spyglass uses 5–8.5× less space

- Spyglass stores each entry only once
- DBMS stores table and multiple indexes
- Spyglass only stores partial pathnames

Macrobenchmark
• Compares total run-time for three synthetic query logs
• Spyglass is up to three orders of magnitude faster

- Spyglass must search a small overall space for all logs
- Spyglass only searches very small space for localized queries

Versioning Overhead
• Compares total run-time for a synthetic

query log
• Each version adds a 10% overhead to

the total run time
• The overhead is not evenly distributed

across queries
- Most queries have little overhead
- A few queries account for most of

the overhead
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Update Performance
• Compares bulk index updates for each trace

- DBMS must load table and build indexes
• Spyglass is between 8x and 44x faster

- Spyglass indexes each entry only once
- Spyglass writes to disk once, sequentially
- DBMS must build multiple indexes
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