
Metadata Crawling
• Based on differencing file system snapshots
• Uses WAFL for snapshots

Experimental Evaluation

Spyglass: Scalable Metadata Search for Large-Scale Storage
Andrew Leung1,2, Minglong Shao2, Tim Bisson2, Shankar Pasupathy2, Ethan L. Miller1

1UC Santa Cruz 2NetApp

Problem
• Modern fIle systems can store petabytes of data and billions of files
• Users waste time finding and organizing files
• Administrator decisions are more complicated
➨ Need a way to quickly find and understand the data being stored

Searching file metadata
• Inode fields and extended attributes contain useful information
• Can address many user questions

- "Where are the document files I modified most recently?"
- "Which files in my home directory should be deleted?"

• Can address many administrator questions
- "Which system configuration files were changed last week?"
- "Which user home directories have grown most in the past 6 months?"

• Existing file search tools lack required scalability
- Focus on content-based search, rely on DBMS for metadata search
- Content search cannot address many important questions
- DBMS are ill-suited for metadata characteristics

Query characteristics
• File system namespace locality

- Files that satisfy a query are often clustered in the namespace
- Due to clustering of metadata attribute values

• Locality of reference
- Like files, only a small set of namespace locations are popular

 - Most namespace locations are infrequently searched
• Selectivity

- Queries should try to refine results to a small set of files
 - Too many results are not focused and thus not very useful

Metadata Characteristics
We analyzed metadata traces collected from file servers within NetApp

Spatial locality of attribute values:
 • Attributes values tend to be clustered in a few sub-trees

• Locality ratio: The percentage of directories that contain files with a
particular attribute value compared to all directories

• Ratios for the ext, size, owner and ctime for the 32 most frequent
attribute values

 • All ratios are below 1% meaning these attributes occur in fewer
than 1% of directories

Skewed distribution of attribute values:
• Attribute value distributions tend to be highly skewed
• Data distribution: The highest ranked (most popular) attribute

values are plotted against their file count percentage (log-log scale)

• 80% of files have one of 20 popular extensions, while the other 20%
account for the other 4000 extensions, following a power law distribution

• The cartesian product of top 20 ext and size values is very small
• Attribute combinations are more evenly distributed

Conclusions
• Growing amounts of data are making data management more difficult
• Metadata search can address many data management challenges
• Spyglass exploits metadata characteristics for scalable metadata search

- Achieves up to three orders of magnitude performance improvement
compared to DBMS solutions

Setup
• Compare to two popular database management systems (DBMSs)

- System X and System Y
• Use our real-world metadata traces
• Compare to index-based DBMS design

- Create B+-tree index on each column

Storage
system

Spyglass

Cache Crawler

Local File System

Partitions

Version 1

Version n

Index

Query

Results

Hierarchical Partitioning
• Index is partitioned based on file system hierarchy

- Each partition is a sub-tree partition
- Each partition is stored sequentially on-disk

• Spyglass index is a set of sub-tree partitions, each with a:
- Partition index: An index of files in the sub-tree
- Partition metadata: Information about indexed files

• A partition cache uses LRU to manage partitions

/

home proj usr

aleung elm distmeta pergamum include

thesis scidac src experiments

Spyglass indexer

Design Principles
• Should be sensitive to the file system's hierarchy

- Exploit hierarchy locality properties
• Query performance more important than consistency

- Most queries do not need strict consistency
• Metadata history enables important queries

- Storage trends
- State changes

• Do not require additional hardware
- May be very expensive for large-scale systems

Partition Index and Metadata
• Partition index is a KD-tree
• Partition metadata contains:

- Summary information
- Version vector
- Signature files

- Test to find if partition index has files relevant to a query

1 0 1 1 0 1 0 1•••

doc xls c
ppt

py pl h ppt
jpg

mov

hash(file extension) mod b

1 1 0 1 0 0 1 1•••

<1 1–4 5–31 32–
127

128–
255

256–
511

100MB–
500MB

>500MB

hash(file size)

Design Overview
• Two major components:

- Spyglass index which stores and indexes metadata
- A crawler that extracts metadata from the storage system

• Two key concepts:
- Hierarchical partitioning: Breaks index into partitions based

on the file system hierarchy
- Partition versioning: Index updates are batched and treated

as new incremental versions

Partition Versioning
• Each sub-tree partition is versioned separately
• Allows time-traveling queries and simplifies updates
• Composed of a baseline index and incremental indexes

- Baseline index is a normal partition index at T0

- Incremental index contains metadata changes to roll query
results from Tn-1 to Tn

• Old versions can be sacrificed for performance
- Collapsing versions means combining baseline

and incremental indexes
- Checkpointing saves landmark versions for later

T0

Spyglass
indexer

T1 T2 T3

Baseline
index

T0 T2T0 T0 T2 T3

Incremental
indexes

Space Overhead
• Compares on-disk space required

- DBMS must store table and build indexes
• Spyglass uses 5–8.5× less space

- Spyglass stores each entry only once
- DBMS stores table and multiple indexes
- Spyglass only stores partial pathnames

Macrobenchmark
• Compares total run-time for three synthetic query logs
• Spyglass is up to three orders of magnitude faster

- Spyglass must search a small overall space for all logs
- Spyglass only searches very small space for localized queries

Versioning Overhead
• Compares total run-time for a synthetic

query log
• Each version adds a 10% overhead to

the total run time
• The overhead is not evenly distributed

across queries
- Most queries have little overhead
- A few queries account for most of

the overhead

Log 1 Log 2 Log 3

To
ta

l L
og

 R
un

 T
im

e
(s

)

0

2000

4000

6000

8000

10000

Web

169
1098876

182
919 918

13 454 400

Spyglass
System X
System Y

Log 1 Log 2 Log 3

Eng

787

27932691

55

10396

6733

44

1902

3538

Log 1 Log 2 Log 3

Home

1839

33279

5273

52

320336
113244

48

119149
114260

Trace
Web Eng Home

Sp
ac

e
O

ve
rh

ea
d

(G
Bs

)

0
10
20
30
40
50
60
70
80
90

100

.7
6 4 3

24
19 17

86

103

Spyglass
System X Table
System X Indexes
System Y Table
System Y Indexes

Number of Versions
0 1 2 3To

ta
l R

un
 T

im
e

(s
)

0
100
200
300
400
500

Query Execution Time

1ms 10ms 100ms 1s 10s

Fr
ac

tio
n

of
 Q

ue
rie

s

0
0.2
0.4
0.6
0.8

1

Update Performance
• Compares bulk index updates for each trace

- DBMS must load table and build indexes
• Spyglass is between 8x and 44x faster

- Spyglass indexes each entry only once
- Spyglass writes to disk once, sequentially
- DBMS must build multiple indexes

Trace
Web Eng Home

Up
da

te
 T

im
e

(s
)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

232 2882 2706 1212
9883

53405

5906

65242

214293

Spyglass
System X Load
System X Index
System Y Load
System Y Index

Blk 1
Inode file in snapshot 1 Inode file in snapshot 2

Blk 2 Blk 3
Blk 9

Blk 2 Blk 8Inode 50

Inode 50
(mtime

changed)

Blk 5 Blk 5Blk 4 Blk 4Blk 6 Blk 7

/

home proj usr

aleung elm distmeta pergamum include

thesis scidac src experiments

