
Data-Intensive Computing on the M45 Cluster
Julio López, Greg Ganger, Garth Gibson and Randy Bryant

Exponential data growth: Multi-TB and PB size datasets
Apps benefit from large data, e.g., Machine Learning
Data analytics difficult at scale:

Hard to program, stress I/O and memory, frequent failures
CMU/Yahoo! collaboration: M45 cluster (2400 cores)
Rapidly enabled scaling up research problem sizes

Overview

M45 Cluster 
Total: 2400 cores, 1.8 TB RAM, 0.9 PB storage
Cluster in a trailer
300 nodes: (8 cores, 6GB RAM, 4 x 750GB disks) / node
GB Ethernet networking
Hadoop stack: Linux, Hadoop M-R, HDFS. HOD, Pig
Cluster-wide shared file system: HDFS

Applications
Machine Learning / Data mining / Language Technology

American English web dataset (Callan)
Select documents suitable for learning English
Grammar induction (Smith)
Inferring language structures
Statistical Machine Translation (Vogel)
Modern language translations, large training data
N-gram extraction (Mitchell)
Creating corpora for language analysis
Understanding Wikipedia (Kraut)
How Wikipedians collaborate?
Large-scale graph mining (Faloutsos)
Analyzing graph structure of different web networks
Large-scale scene matching (Efros)
Retrieve images from FLICKR & index

Systems
Performance monitoring (Narasinham & Ganger)
Automatic failure diagnosis
Parallel file systems for Hadoop (Gibson)
Exploring other DFSs for Hadoop, e.g., PVFS, pNFS

Hadoop
Implementation of Google’s Map-Reduce (M-R)
Open-source Apache project http://hadoop.apache.org
HDFS: Hadoop Distributed File System
Scalable associativity: Distributed “GROUP BY”
Directly operatates on input dataset – no data loading
Ability to process raw unstructured input
Automatic input partitioning and task scheduling
Scales data-bandwidth by moving computation to data
Fine granularity failure handling

Experiences
Good problem size scaling in a short period of time
Learning curve:

Using the system, plugging things together
Parallelizing the apps. Mixing existing and new code
Loading data, preparing input, dealing with small files
Being good web crawlers
Debugging apps, tracking performance
Cluster sharing through user self policing

Many ML apps lend well into the Map-Reduce model
Facilitates large-scale statistics computation

Hadoop hides distributed programming complexity
Enables distributed and out-of-core processing
Good for unstructured, irregular and unordered input
Offers little benefit for ordered input (map-only tasks)

Constrained computing model:
Map/Shuffle/Sort/Reduce or Map-only tasks
Coarse-grain lockstep operations (map/reduce waves)
Not natural for multi-dataset operations

Good building block for distributed abstractions

Oportunities for Improvement
File-system features

Allow post-creation writes (appends are now possible)
Multiple writers to non-overlaping offset-ranges
Using general parallel FS (Tantisiriroj et al.)
Dealing with many files (GIGA+, Patil et al.)

Performance isolation (Wachs et al.)
Performance monitoring “meta-analytics” (Tan et al.)
Hadoop parameter configuration (Sambasivan et al.)
Cluster management (Tashi project: CMU/Intel/Yahoo!)

Easier and efficient resource sharing and accounting
Storage / computation co-scheduling

Hybrid storage/computation models

Cluster-wide HDFS

HOD virtual cluster

HDFS Name node
(metadata server)

Login node

Data node

Task node

Local Job
Tracker node


