Data-Intensive Computing on the M45 Cluster

Julio Lopez, Greg Ganger, Garth Gibson and Randy Bryant

Overview

 Exponential data growth: Multi-TB and PB size datasets
* Apps benefit from large data, e.g., Machine Learning
» Data analytics difficult at scale:
 Hard to program, stress I/O and memory, frequent failures
 CMU/Yahoo! collaboration: M45 cluster (2400 cores)

» Rapidly enabled scaling up research problem sizes

M45 Cluster

* Total: 2400 cores, 1.8 TB RAM, 0.9 PB storage

* Cluster in a trailer

* 300 nodes: (8 cores, 6GB RAM, 4 x 750GB disks) / node
 GB Ethernet networking

 Hadoop stack: Linux, Hadoop M-R, HDFS. HOD, Pig

* Cluster-wide shared file system: HDFS

_ Cluster-wide HDFS

Applications

 Machine Learning / Data mining / Language Technology

 American English web dataset (Callan)
Select documents suitable for learning English

 Grammar induction (Smith)
Inferring language structures

« Statistical Machine Translation (Vogel)
Modern language translations, large training data

* N-gram extraction (Mitchell)
Creating corpora for language analysis

* Understanding Wikipedia (Kraut)
How Wikipedians collaborate?

» Large-scale graph mining (Faloutsos)
Analyzing graph structure of different web networks

« Large-scale scene matching (Efros)
Retrieve images from FLICKR & index

« Systems

 Performance monitoring (Narasinham & Ganger)
Automatic failure diagnosis

« Parallel file systems for Hadoop (Gibson)
Exploring other DFSs for Hadoop, e.g., PVFS, pNFS

Carnegie Mellon

* Implementation of Google’s Map-Reduce (M-R)

* Open-source Apache project http://hadoop.apache.org
« HDFS: Hadoop Distributed File System

« Scalable associativity: Distributed “GROUP BY”

* Directly operatates on input dataset — no data loading
* Ability to process raw unstructured input

« Automatic input partitioning and task scheduling

« Scales data-bandwidth by moving computation to data
* Fine granularity failure handling

EXxperiences

 Good problem size scaling in a short period of time
* Learning curve:
* Using the system, plugging things together
* Parallelizing the apps. Mixing existing and new code
* Loading data, preparing input, dealing with small files
* Being good web crawlers
* Debugging apps, tracking performance
 Cluster sharing through user self policing
 Many ML apps lend well into the Map-Reduce model
 Facilitates large-scale statistics computation
 Hadoop hides distributed programming complexity
- Enables distributed and out-of-core processing
* Good for unstructured, irregular and unordered input
 Offers little benefit for ordered input (map-only tasks)
» Constrained computing model:
* Map/Shuffle/Sort/Reduce or Map-only tasks
» Coarse-grain lockstep operations (map/reduce waves)
* Not natural for multi-dataset operations
* Good building block for distributed abstractions

Oportunities for Improvement

* File-system features
* Allow post-creation writes (appends are now possible)
* Multiple writers to non-overlaping offset-ranges
* Using general parallel FS (Tantisiriroj et al.)
* Dealing with many files (GIGA+, Patil et al.)
 Performance isolation (Wachs et al.)
 Performance monitoring “meta-analytics” (Tan et al.)
 Hadoop parameter configuration (Sambasivan et al.)
* Cluster management (Tashi project: CMU/Intel/Yahoo!)
« Easier and efficient resource sharing and accounting

« Storage / computation co-scheduling

* Hybrid storage/computation models

Parallel Data
Laboratory




