
Log-structured Files for Fast Checkpointing

Motivation

Milo Polte, Jiri Simsa, Wittawat Tantisiriroj, Shobhit Dayal, Mikhail Chainani,
Dilip Kumar Uppugandla, Garth Gibson

• Approaching a checkpointing catatrasophe in HPC:
 - Systems with more nodes, failures
 - Larger datasets
 - Longer running, more frequent checkpoints
• At current trends, checkpoints will prevent most useful

application work within the next decade

0%

25%

50%

75%

100%

2006 2009 2012 2015 2018
Year

A
pp

lic
at

io
n

U
ti

liz
at

io
n

(%
)

Projected Time Available to Application Code

Checkpointing
• Technique for fault tolerance
• Compute nodes barrier sync, write state to storage
• No useful work until checkpoint complete
• Concurrent strided writers introduce more seeks
• Most checkpoints never used
 - 1996 log of jobs from LLNL had orders of magnitude
 fewer failed jobs than checkpoints

Log-Structured Writing
Buffer:

0 50 100

"Write 50 bytes at offset 100"

"Write 50 bytes at offset 0"

"Write 50 bytes at offset 50"

Log

Representation:

Figure 1: A minimum complexity write encoding

pvfs2-viewdist utility. If you find it under the pvfs2 storage space for the server, you can examine
the contents using a utility like hexdump.

This step of the project is due on April 23rd. Turn in a tar ball containing the following:

(a) Your modified PVFS2 source directory (after running make clean)

(b) A GROUP file containing your group number and names

(c) A README-step-2.pdf file containing:

• A description of your write path strategy for log encoding including the format. Provide
a rationale for your design. Also document what modifications you made to the PVFS2
code to achieve it.

• A comparison of the write performance of mpi io test’s N-to-1 write pattern on your
implementation of log-encoding versus unmodified PVFS (use the -op write flag to
mpi io test). Vary the write size and the number of clients and make plots of your
results. The comparison should be at least partially graphical.

Turn in instructions are included at the end of this document.

5

pwrite(�le, bu�er[100], 50, 100);
pwrite(�le, bu�er, 50, 0);
pwrite(�le, bu�er[50], 50, 50);

• Writes on disk in temporal order rather than logical
• Reduces time lost to write seeks, but can slow reading
• Not appropriate for all workloads, all files
• Appropriate for checkpoints (“write-once, read-maybe”)
• Our idea: Per-file log representations

Write Performance

QuickTime™ and a
 decompressor

are needed to see this picture.

Read Performance

Current Status
• Student implementations show good write performance
• Promising potential for further work

• Read path improvements
 - Use footers for earlier terminated backwards scan
 - Flatten on first read
 - Separate index structure

• Generalize per-file representation technology
 - Per-file RAID
 - Optimized formats for scientific files

Implementation
• Assigned as class project in Advanced Storage Systems
• Implemented in PVFS2, a parallel distributed filesystem
• Writes checkpoint files in a log structure
 - Each write is written to the end of the file with a header
 - Header contains logical location and size of the write
• Reads serviced naively by scanning file for all headers
 - Simple implementation
 - Checkpoints rarely read
 - Students not graded on read performance
• Evaluated with mpi_io_test using 10 clients

• Best benefit seen for 16k writes
• 1k writes penalized by header overhead
• 4k writes have alignment issues

• Performance poor as reads scan entire file for applicable writes

0

50

100

150

200

250

300

1024 4096 16384 65536 262144

Size of Client Reads (bytes)

B
a
n

d
w

id
th

 (
M

B
/

s
)

Original PVFS2

Log-structured PVFS2

0

10

20

30

40

50

60

70

1024 4096 16384 65536 262144

Size of Client Writes (bytes)

B
a
n

d
w

id
th

 (
M

B
/

s
)

Original PVFS2

Log-structured PVFS2

