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Internet Services
• Applications are becoming data-intentive
 • Large input data set (e.g. the entire web)
 • Distributed, parallel execution
• Distributed file system is a key component of the 

computing system
 • Purpose-built for anticipated workloads
 • New, diverse semantics (typically not support POSIX)
• Hadoop & Hadoop distributed file system (HDFS)
 • Distribute data across multiple nodes
 • Use triplication for reliability
 • Divide application into many small units of work
 • Use file layout information, which shows where data is 
  located, to collocate computation and data

High performance computing (HPC)
• Equally large scale applications
 • Large input data set (e.g. astronomy data)
 • Distributed, parallel execution
 • Use parallel file systems for scalable I/O
• Parallel file system
 • Handle a wide variety of workload
  •  Concurrent reads and writes
  •  Small file support, scalable metadata
 • Typically support POSIX and VFS interface
 • Maturing and being standardized (pNFS)

Experiment Setup

• Readahead buffer: reads 4MB from PVFS and replies in 
4KB units to Hadoop

• File layout information: exposes file layout stored in PVFS 
as extended attributes

• Replication: triplicates write request to three PVFS files 
with disjoint layouts

PVFS plug-in under Hadoop stack

• Yahoo! M45 cluster (Xeon quad-core 1.86 GHz, 6GB 
Memory, 7200 rpm SATA 750 GB disks, Gigabit Ethernet)

• Benchmarks
 • Grep: Search for a rare pattern in a hundred million 
  100-byte records (100GB)
 • Sort: Sort a hundred million 100-byte records (100GB)
 • Never-Ending Language Learning (NELL): 
  (from J. Betteridge) Count the number of selected 
  phases in 37GB data-set

• PVFS performance is comparable to HDFS for both 
read-intensive applications
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• sort using HDFS is faster than running sort on PVFS 
because HDFS writes the first copy locally

• By using both readahead buffer and file layout 
information, PVFS performance is comparable to HDFS

Experiment Results

Hadoop framework

Extensible file system API
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Conclusion
• With few modification in a non-intrusive PVFS shim layer, 

PVFS delivers promising performance for Hadoop 
applications

• File layout information is essential for Hadoop to 
collocate computation and data
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