
Crossing the Chasm: Sneaking a Parallel File System into Hadoop

Overview
Wittawat Tantisiriroj, Swapnil Patil, Garth Gibson

Internet Services
• Applications are becoming data-intentive
 • Large input data set (e.g. the entire web)
 • Distributed, parallel execution
• Distributed file system is a key component of the

computing system
 • Purpose-built for anticipated workloads
 • New, diverse semantics (typically not support POSIX)
• Hadoop & Hadoop distributed file system (HDFS)
 • Distribute data across multiple nodes
 • Use triplication for reliability
 • Divide application into many small units of work
 • Use file layout information, which shows where data is
 located, to collocate computation and data

High performance computing (HPC)
• Equally large scale applications
 • Large input data set (e.g. astronomy data)
 • Distributed, parallel execution
 • Use parallel file systems for scalable I/O
• Parallel file system
 • Handle a wide variety of workload
 • Concurrent reads and writes
 • Small file support, scalable metadata
 • Typically support POSIX and VFS interface
 • Maturing and being standardized (pNFS)

Experiment Setup

• Readahead buffer: reads 4MB from PVFS and replies in
4KB units to Hadoop

• File layout information: exposes file layout stored in PVFS
as extended attributes

• Replication: triplicates write request to three PVFS files
with disjoint layouts

PVFS plug-in under Hadoop stack

• Yahoo! M45 cluster (Xeon quad-core 1.86 GHz, 6GB
Memory, 7200 rpm SATA 750 GB disks, Gigabit Ethernet)

• Benchmarks
 • Grep: Search for a rare pattern in a hundred million
 100-byte records (100GB)
 • Sort: Sort a hundred million 100-byte records (100GB)
 • Never-Ending Language Learning (NELL):
 (from J. Betteridge) Count the number of selected
 phases in 37GB data-set

• PVFS performance is comparable to HDFS for both
read-intensive applications

Acknowledgements
• Sams Lang, Rob Ross, Yahoo!, Julio Lopez,
 Justin Betteridge, Le Zhao, Jamie Callan, Shay Cohen,
 Noah Smith, U Kang and Christos Faloutsos

• sort using HDFS is faster than running sort on PVFS
because HDFS writes the first copy locally

• By using both readahead buffer and file layout
information, PVFS performance is comparable to HDFS

Experiment Results

Hadoop framework

Extensible file system API

PVFS JNI shim layerHDFS client library

Hadoop applications

Unmodified
PVFS client library (C)

PVFS JNI shim layer

Readahead buffer

File layout information

Replication

Unmodified
PVFS serversHDFS servers

Client

Server

Conclusion
• With few modification in a non-intrusive PVFS shim layer,

PVFS delivers promising performance for Hadoop
applications

• File layout information is essential for Hadoop to
collocate computation and data

0
20
40
60
80

100
120
140

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

Grep (100GB, 50 nodes)

PVFS HDFS

0

100

200

300

400

500

600

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

NELL (37GB, 100 nodes)

PVFS HDFS

0

200

400

600

800

1000

1200

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

Sort (100GB, 50 nodes)

PVFS HDFS PVFS - 2 copies

0

200

400

600

800

1000

N
et

w
or

k
Tr

af
fic

 (G
B

)

Sort (100GB, 50 nodes)

PVFS HDFS PVFS - 2 copies

0

50

100

150

200

250

300

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

Grep (64GB, 32 nodes, no replication)
PVFS:
no buffer, no file layout

PVFS:
buffer, no file layout

PVFS:
buffer, file layout

HDFS

