
Large-scale Evaluation of GIGA+ Scalable Directories
(or, How to build directories with trillions of files)

Problem: Scalable Directories

Swapnil Patil and Garth Gibson (Carnegie Mellon University)

FUSE-based user-level implementation evaluated on a
100-node cluster at Sandia National Labs
 (thanks to Ruth Klundt and Lee Ward)
• Two dual-core 2.8GHz AMD Opteron processors with 8GB

memory and 7200rpm 80GB disk
• GigE backplane with a HP Procurve 2824 switch

UCAR Metarates benchmark
• MPI application that manages multiple clients creating files

in a single directory
• Once all files are created, performs stat() and utime() on

each file

Experiment
• Each client creates 375,000 files one each server, in a

common directory striped over many servers

GIGA+ Optimizations

Peak performance of more than 8,300 file creates/second
• Scales by 55-60% with the addition of 2X more servers
• Copies updated lazily, on addressing an incorrect server

Cost of Splitting

Understanding GIGA+ scaling
• Initial “step up” as directory grows to use all servers
• “Spikes” due to partition splits, when all servers split at

the same time
 - Servers can stagger to avoid splitting simultaneously

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

1 2 4 8 16 32

8,368

4,132

3,492

2,515

1,389
893

200

1,375

Ag
gr

eg
at

e
th

ro
ug

hp
ut

(c
re

at
es

/s
ec

on
d)

GIGA+ p rototype
(with 2 number of servers)

Panasas
on DF

Linux
NFS

N(single server)

Average Peak

Servers perform redundant work by repeatedly rehashing
and moving entries to new partitions
• Measure the number of redundant creates as a fraction

increase on the number of requested creates
• Sensitive to the partition size and the number of files

created on each server

Experimental Evaluation Scale and Performance of GIGA+

Need high performance metadata services
• Most file systems store a directory on a single MDS
• Apps using file systems in new ways, like a simple DB

• Apps generate millions of small files in one directory
• Large apps run in parallel on clusters of 100,000s of CPUs

Build scalable directories for shared file-systems
• POSIX-compliant, maintain UNIX file system semantics

• GIGA+ indexing divides a directory into partitions, growing
incrementally over multiple servers in parallel

• Eliminates serialization and system-wide synchronization

Power-of-2 optimization (when number of servers = 2^D)
• Below tree depth D, all split operations create partitions

on the same server
• Splitting network traffic becomes zero
• Client bitmap errors go to zero (client bitmap only needs

to represent first D rows of split tree)

Addition of servers with minimal redistribution
• If the number of servers is doubled, half the partitions of

every current server move to the new servers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

103 104 105 106 107

In
st

an
ta

ne
ou

s t
hr

ou
gh

pu
t (

cr
ea

te
s/

se
co

nd
)

Directory size (number of �les)

32 servers
16 servers

8 servers
4 servers
2 servers

1 server

