
Queriable File Systems for Metadata Management

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

9P
 Service
Library

File System
Interface

Metadata
Store / Index

Manager

Query Parser

Query
Processor

File Data
Placement

Kernel Interface
(System Calls)

Virtual File
System

Operating System Kernel

QUASAR File System Software

File System Software Architecture

File Data
Storage

Metadata
& Index
Storage

Superblock
(keeps FS stats

and pointers to other
structures)

Files
Table

Links
Table

File
Attribute

Index

Link
Attribute

Index

Sasha Ames Maya B. Gokhale Carlos Maltzahn
University of California, Santa Cruz University of California, Santa CruzLawrence Livermore National Laboratory

Lists of File and
Link IDs

File
Node

File
Node

Link
Attributes

File
Attributes

9P
File

System
Client

Metadata Storage Data Structure Layout

Requests /
Responses

Via 9P
Protocol

File System Operations

File
(Directory

or
Semantic

Node)

FileLink

Attributes
Key : Value

 . . .
. . .

Attributes
Key : Value
 . . .
. . .

Data Model for File System Metadata

(1)
XML parser

- extracts text and
writes basic attributes:

title and dateline

(4)
ONLP

Extractor

(3)
Stanford Entity

Extractor

(2)
Dictionary
Keyword
Extractor

(5)
Unifier

- chooses
the top entities

(6)
Proximator

- computes
distance scores

for pairs of
entities

(7)
Tabulator
- produces
character

statistics from
text

(8)
Decider

- determines if text
contains tabular

data

Abstract:

Reads
Writes

9P
operations

lookup
opendir

Parsed Query
Info

File IDs,
directory entries

Stat
X-Attrs

Term
Lookup

Posting
lists:

file / link IDs

Entity extractors - locate and
categorize meaningful

terms from the document
text

Pipeline stage execution times of queriable file system with optimizations
Pipeline version: QFS(A+L) over 1000 documents (times in ms)

New pipeline implementation (QFS):

The application uses our queriable file system metadata storage
capabilities and queries for required metadata at each stage. To
retrieve previously written metadata, the application uses the file
system query interface. Our versions:
QFS(A): Only utilizes extended attributes - to make the metadata
useful between pipeline stages, we had to devise a naming scheme for
groups of attributes, as the metadata for each entity.
QFS(A+L): Utilizes extended attributes, links and zero-byte files as
semantic nodes for a rich semantic model
QFS Hybrid 2: Combines stages 1-6 from QFS(A+L) with 7, 8
from QFS(A)

Original pipeline implementation (FS+DB): writes
metadata at each pipeline stage to flat files, and subsequent stages
read and parse the files. The drawback to this approach is that the
metadata is not searchable and must be written to a database for
that purpose.

Livermore Entity Extraction (LexTrac)
 ✺ Purpose to automate analysis of text documents
 ✺ Each entity found by extractors contains its own metadata
 ✺ We show the "Ingest" phase. Once all tags have been generated
we follow with a "Query" phase.

Problem:
▪ Approaches to access and manage metadata has changed little
▪ Dichotomy: (1) files store raw data, (2) databases store metadata
▪ This hybrid approach is inflexible and slow

Quasar File System (QFS):
▪ First class objects: files, file attributes, relational links between files
▪ Reduces complexity and improves performance by orders of magnitude
▪ Evaluation based on Livermore Entity Extraction

▪ Traditional Architecture - file systems store data,
relational databases store metadata

▪ Separation reduces performance and consistency:

We propose extending file systems to manage interfile relationships using links
and provide a common interface for querying utilizing conventional file
metadata, extended attributes and our new links. As with files, our links contain
key-value pair attributes. We use links to implement POSIX directories, in
which zero-byte files link to other files. We have developed the QUASAR query/
naming language specifically for posing queries to our file system data model,
based in part on XPATH.

Our prototype file system implementation uses the 9P protocol for transport.
Pathnames are expressed in QUASAR and are processed by the file system's
"lookup" pathway. In the prototype, file data is stored in corresponding "backing
files" on the local disk. Metadata is organized in data structures suited for byte-
addressable memories. Indices are incrementally updated when new attributes
are written.

The prototype system is operational and we now have directed our
efforts to system performance optimization. Our optimizations either
implemented or in progress include: simple caching of query results; batch
transfer of multiple metadata "write-oriented" operations; improved query
planning/optimization.

Introduction:

Our Approach:

Results:Case Study:

RUN XML PARSE DICTIONARY READ DICTIONARY WRITE STANFORD READ/PROC STANFORD WRITE ONLP READ ONLP PROC

No Optimizations 1458 1219 19281 27848 18115 263 2044

Caching 1314 1253 18084 27723 17095 264 2072

Batching 1459 1403 2633 28539 2747 264 2190

Caching + Batching 1330 1395 2580 28338 2850 249 2013

ONLP PROC 2 OLNP WRITE UNIFY READ UNIFY WRITE PROXIMATOR TABULATOR DECIDER

No Optimizations 58544 13085 5685 31888 380484 20658 129481

Caching 58370 11757 5324 29611 329850 20560 43840

Batching 59070 2381 5928 3520 38468 2647 24873

Caching + Batching 57962 2331 5709 3527 38372 2456 9254

 ✺ Database system used: PostgreSQL.

LLNL-POST-407377

!000 Documents

Ethan L. Miller
University of California, Santa Cruz

1. Expensive 2-step query evaluation: first database
query, second file name resolution

2. Brittle metadata/data association: costly
maintenance of path names in database while
moving data

3. Global scope only: as opposed to scope of file
directories (often aligned to semantics and locality)

▪ Metadata-rich file system: conv. file
system I/O services + metadata storage
and query infrastructure

!"#$%"&$'()*+$

,"-)".&*/0 (12$*3 (14/")$ 514/")$ 612$*3 614/")$!/.7"8*)./ 9*:;%*)./ ,$-"3$/ 9.)*%

(
#
$
$
3
;
#

!<

!=

!>

!?

@

?

>

=

<

A@

A?

QFS(A+L) / QFS(A)

Number of Documents

500 1000 1500 2000 2500 3000 3500

tim
e
 (

s)

0

500

1000

1500

2000

2500

3000

FS+DB (flash)

FS+DB (disk)

QFS Hybrid 2 (flash)

QFS Hybrid 2 (disk)

Query

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Ti
m

e
(s

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CAT 9P LS PSQL

Database File
System

Structured
Data

Unstructured
Data

Pathnames

Metadata-rich
File System

Storage

Application

Structured and
Unstructured

Data

Queries
Tagging

File
System

I/O

File Data
Management

Metadata
Management

Application

Storage

Queries
Tagging

File
System

I/O

Individual Query Performance

Pipeline Total Execution Time

filetype
 = NewsStory
filename = xx
TITLE = "BLAH"

EntityType
 = Proximity
Score
 = 4

EntityType
 = SemanticTag
SematicType
 = person
SemanticValue
 = John Doe

EntityType
 = SemanticTag
SematicType
 = location
SemanticValue
 = New York

File
Content

(Text)

Extractor = Stanford
Confidence = 0.8

Begin = 53
. . .

Extractor
= Unified

. . .

A

B

C

D

E

F G

H

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Joins 1 0 0 2 2 3 5 3 5

Results 1500 10000 1000 4 4 10 2 5 2

Elements A C C A D E A D E ABCEF ABCEFGH ABCEF ABCEFGH

Big Table? N Y Y N N Y Y Y Y

Metadata Ontology

