On Application-level Approaches to Avoiding TCP Throughput Collapse in Cluster-based Storage Systems

Elie Krevat

Vijay Vasudevan, Amar Phanishayee, David Andersen, Greg Ganger, Garth Gibson, Srini Seshan

PARALLEL DATA LABORATORY

Carnegie Mellon University

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Elie Krevat © November 07

Outline

- Motivation: TCP throughput collapse
- TCP- and Ethernet-level improvements
- Possible application-level solutions
- Conclusions

Carnegie Mellon Parallel Data Laboratory

Cluster-based Storage Systems

Storage Networking Options

- FibreChannel, InfiniBand
 - ✓ Specialized high throughput networks
 - ***** Expensive
- Commodity Ethernet networks
 - ✓ Low cost
 - ✓ Shared infrastructure
 - **×**TCP throughput collapse (with synchronized reads)

Storage Cluster Experimental Setup

- Client performs synchronized reads
 - Fix SRU size
 - Increase # of servers
- Servers respond with cached data
- Measure goodput (i.e., app throughput)

TCP Throughput Collapse: Incast

Carnegie Mellon Parallel Data Laboratory

Link idle time due to timeouts

Outline

• Motivation: TCP throughput collapse

TCP- and Ethernet-level improvements

- Possible application-level solutions
- Conclusions

Carnegie Mellon Parallel Data Laboratory

Reducing the penalty of timeouts

- Reduce penalty by reducing TCP
 *R*etransmission *T*ime*O*ut period (RTO)
- RTOmin to guard against premature timeouts
 - Default = 200ms
 - Orders of magnitude greater than RTT (100 us)

Reducing RTOmin in simulation

Carnegie Mellon Parallel Data Laboratory

Issues with Reducing RTOmin

- Still show 30% decrease for 64 servers
- Implementation Hurdles:
 - Soft Timers (µs granularity)
 - Safety and generality
 - Servers talk to other clients over wide area
 - Premature timeouts

More TCP Improvements

- Increasing SRU size means less link idle time
 ✓ MB-sized SRUs effective
 - More pinned space in kernel memory
- Larger switch buffers can mitigate *Incast* ✓ Doubling buffer space supports double the servers
 × Expensive switches
- More results at FAST '08

Ethernet Improvements?

- Ethernet Flow Control helps, with problems
 - ✓ Very good performance on one switch
 - Adverse effects on other flows
- New Ethernet protocols/standards
 - Congestion management
 - Rate-limiting behavior
 - Granular per-channel flow control
 - "Pause" packets won't block entire link
 - ✓ Provide "no-drop" congestion response
 - May take years before added to switches

Carnegie Mellon Parallel Data Laboratory

Outline

- TCP- and Ethernet-level improvements
- Possible application-level solutions
- Conclusions

Carnegie Mellon Parallel Data Laboratory

Application-level Solutions

- "Application" is storage cluster software
 - Has more knowledge of all requests
- Used in practice to avoid Incast
- Can combine with TCP improvements

Carnegie Mellon Parallel Data Laboratory

Increasing Request Sizes

- Make larger requests
 - From simulation, larger SRU sizes are better
 - But can't be too large!
 - Memory pressure problems
 - Latency and fairness issues

Carnegie Mellon Parallel Data Laboratory

Limiting Number of Servers

- Restrict number of synchronously communicating servers
 - Try to stay in "sweet spot"
- Panasas uses "RAID groups"
 - Group size of specific range
 - Load balance over many groups

Throttling Data Transfers

- Client can throttle servers' send rates
 - Advertise smaller TCP receive buffer
- Problems with static throttle rate
 - May underutilize link across few servers
 - Doesn't generalize to multiple requests

Staggering Data Transfers

- Stagger server responses to limit interference
- Option 1: Controlled by client
 - Client requests from subset of servers
 - Maintain window of requests
- Option 2: Controlled at servers
 - Servers skew responses
 - Random or deterministic
 - Prefetch data during delay
- Natural staggering effect in real systems

Global Scheduling

- Servers respond based on all traffic to client
- Maintain global pool of SRU tokens
- Servers must obtain SRU token to send data
- Limited #/tokens based on "sweet spot"
- Many interesting ways to distribute tokens
 - Can use separate token authority
 - Resides at client or distributed
 - Load balance requests

Outline

• Motivation: TCP throughput collapse

- TCP- and Ethernet-level improvements
- Possible application-level solutions

Conclusions

Carnegie Mellon Parallel Data Laboratory

Conclusions

- Synchronized Reads + TCP timeouts → Throughput Collapse
- TCP- and Ethernet-level improvements
 - Not a complete solution
- Potential for application-level solutions
 - Storage system has more knowledge and control
 - Can avoid overloading network