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Storage Networking Options
• FibreChannel, InfiniBand

Specialized high throughput networks
Expensive

• Commodity Ethernet networks
Low cost 
Shared infrastructure
TCP throughput collapse (with synchronized reads)
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Storage Cluster Experimental Setup
• Client performs synchronized reads

• Fix SRU size
• Increase # of servers

• Servers respond with cached data
• Measure goodput (i.e., app throughput)
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TCP Throughput Collapse: Incast
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Number of servers
• [Nagle04] called this Incast
• Cause of throughput collapse: TCP timeouts
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Link idle time due to timeouts
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Reducing the penalty of timeouts
• Reduce penalty by reducing TCP 

Retransmission TimeOut period (RTO)
• RTOmin to guard against premature timeouts

• Default = 200ms
• Orders of magnitude greater than RTT (100 us)
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Reducing RTOmin in simulation
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Number of servers

NewReno with 
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Issues with Reducing RTOmin
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Still show 30% decrease for 64 servers
Implementation Hurdles:
- Soft Timers (μs granularity)
- Safety and generality

- Servers talk to other clients over wide area
- Premature timeouts
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More TCP Improvements
• Increasing SRU size means less link idle time

MB-sized SRUs effective
More pinned space in kernel memory

• Larger switch buffers can mitigate Incast
Doubling buffer space supports double the servers
Expensive switches

• More results at FAST ’08
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Ethernet Improvements?
• Ethernet Flow Control helps, with problems

Very good performance on one switch
Adverse effects on other flows

• New Ethernet protocols/standards
• Congestion management

– Rate-limiting behavior
• Granular per-channel flow control

– “Pause” packets won’t block entire link
Provide “no-drop” congestion response
May take years before added to switches
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Application-level Solutions
• “Application” is storage cluster software

• Has more knowledge of all requests
• Used in practice to avoid Incast
• Can combine with TCP improvements
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Increasing Request Sizes
• Make larger requests

• From simulation, larger SRU sizes are better
• But can’t be too large!

– Memory pressure problems
– Latency and fairness issues
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Limiting Number of Servers
• Restrict number of synchronously 

communicating servers
• Try to stay in “sweet spot”

• Panasas uses “RAID groups”
• Group size of specific range
• Load balance over many groups
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Throttling Data Transfers
• Client can throttle servers’ send rates

• Advertise smaller TCP receive buffer
• Problems with static throttle rate

• May underutilize link across few servers
• Doesn’t generalize to multiple requests
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Staggering Data Transfers
• Stagger server responses to limit interference
• Option 1: Controlled by client 

• Client requests from subset of servers
• Maintain window of requests

• Option 2: Controlled at servers
• Servers skew responses
• Random or deterministic
• Prefetch data during delay

• Natural staggering effect in real systems
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Global Scheduling
• Servers respond based on all traffic to client
• Maintain global pool of SRU tokens
• Servers must obtain SRU token to send data
• Limited #/tokens based on “sweet spot”
• Many interesting ways to distribute tokens

• Can use separate token authority
– Resides at client or distributed
– Load balance requests

http://www.pdl.cmu.edu/ Elie Krevat  © November 07



Outline

• Motivation: TCP throughput collapse

• TCP- and Ethernet-level improvements

• Possible application-level solutions

Conclusions

http://www.pdl.cmu.edu/ 21 Elie Krevat  © November 07



Conclusions
• Synchronized Reads + TCP timeouts 

Throughput Collapse
• TCP- and Ethernet-level improvements

• Not a complete solution
• Potential for application-level solutions 

• Storage system has more knowledge and control
• Can avoid overloading network
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