
On Application-level Approaches to
Avoiding TCP Throughput Collapse in

Cluster-based Storage Systems

Vijay Vasudevan, Amar Phanishayee,
David Andersen, Greg Ganger,

Garth Gibson, Srini Seshan

PARALLEL DATA LABORATORY
Carnegie Mellon University

Elie Krevat

Elie Krevat © November 07http://www.pdl.cmu.edu/

Outline

• Motivation: TCP throughput collapse

• TCP- and Ethernet-level improvements

• Possible application-level solutions

• Conclusions

Elie Krevat © November 07http://www.pdl.cmu.edu/ 2

Elie Krevat © November 07http://www.pdl.cmu.edu/ 3

Cluster-based Storage Systems

Client Switch

Storage Servers

R
R

R
R

1

2

Data Block

Server
Request Unit
(SRU)

3

4
1 2 3 4

Synchronized Read

Client now sends
next batch of requests

Storage Networking Options
• FibreChannel, InfiniBand

Specialized high throughput networks
Expensive

• Commodity Ethernet networks
Low cost
Shared infrastructure
TCP throughput collapse (with synchronized reads)

http://www.pdl.cmu.edu/ 4 Elie Krevat © November 07

Storage Cluster Experimental Setup
• Client performs synchronized reads

• Fix SRU size
• Increase # of servers

• Servers respond with cached data
• Measure goodput (i.e., app throughput)

http://www.pdl.cmu.edu/ 5 Elie Krevat © November 07

TCP Throughput Collapse: Incast

http://www.pdl.cmu.edu/ 6

Number of servers
• [Nagle04] called this Incast
• Cause of throughput collapse: TCP timeouts

Elie Krevat © November 07

Link idle time due to timeouts

http://www.pdl.cmu.edu/ 7

Client Switch

R
R

R
R

1

2

Server
Request Unit
(SRU)

3

4
1 2 3 4

Synchronized Read

4

Link is idle until server experiences a timeout

Elie Krevat © November 07

Outline

• Motivation: TCP throughput collapse

TCP- and Ethernet-level improvements

• Possible application-level solutions

• Conclusions

http://www.pdl.cmu.edu/ 8 Elie Krevat © November 07

Reducing the penalty of timeouts
• Reduce penalty by reducing TCP

Retransmission TimeOut period (RTO)
• RTOmin to guard against premature timeouts

• Default = 200ms
• Orders of magnitude greater than RTT (100 us)

http://www.pdl.cmu.edu/ 9 Elie Krevat © November 07

Reducing RTOmin in simulation

http://www.pdl.cmu.edu/ 10

Number of servers

NewReno with
RTOmin =
200ms

NewReno with
RTOmin = 200us

Elie Krevat © November 07

1000
900
800
700
600
500
400
300
200
100

0
4 8 16 32 64 128

TCP NewReno Comparison with reduced RTOmin

(SRU = 256K, buf = 64KB)

Issues with Reducing RTOmin

http://www.pdl.cmu.edu/ 11

Still show 30% decrease for 64 servers
Implementation Hurdles:
- Soft Timers (μs granularity)
- Safety and generality

- Servers talk to other clients over wide area
- Premature timeouts

Elie Krevat © November 07

More TCP Improvements
• Increasing SRU size means less link idle time

MB-sized SRUs effective
More pinned space in kernel memory

• Larger switch buffers can mitigate Incast
Doubling buffer space supports double the servers
Expensive switches

• More results at FAST ’08

http://www.pdl.cmu.edu/ Elie Krevat © November 07

Ethernet Improvements?
• Ethernet Flow Control helps, with problems

Very good performance on one switch
Adverse effects on other flows

• New Ethernet protocols/standards
• Congestion management

– Rate-limiting behavior
• Granular per-channel flow control

– “Pause” packets won’t block entire link
Provide “no-drop” congestion response
May take years before added to switches

http://www.pdl.cmu.edu/ Elie Krevat © November 07

Outline

• Motivation: TCP throughput collapse

• TCP- and Ethernet-level improvements

Possible application-level solutions

• Conclusions

http://www.pdl.cmu.edu/ 14 Elie Krevat © November 07

Application-level Solutions
• “Application” is storage cluster software

• Has more knowledge of all requests
• Used in practice to avoid Incast
• Can combine with TCP improvements

http://www.pdl.cmu.edu/ Elie Krevat © November 07

Increasing Request Sizes
• Make larger requests

• From simulation, larger SRU sizes are better
• But can’t be too large!

– Memory pressure problems
– Latency and fairness issues

http://www.pdl.cmu.edu/ Elie Krevat © November 07

Limiting Number of Servers
• Restrict number of synchronously

communicating servers
• Try to stay in “sweet spot”

• Panasas uses “RAID groups”
• Group size of specific range
• Load balance over many groups

http://www.pdl.cmu.edu/ Elie Krevat © November 07

Throttling Data Transfers
• Client can throttle servers’ send rates

• Advertise smaller TCP receive buffer
• Problems with static throttle rate

• May underutilize link across few servers
• Doesn’t generalize to multiple requests

http://www.pdl.cmu.edu/ Elie Krevat © November 07

Staggering Data Transfers
• Stagger server responses to limit interference
• Option 1: Controlled by client

• Client requests from subset of servers
• Maintain window of requests

• Option 2: Controlled at servers
• Servers skew responses
• Random or deterministic
• Prefetch data during delay

• Natural staggering effect in real systems

http://www.pdl.cmu.edu/ Elie Krevat © November 07

Global Scheduling
• Servers respond based on all traffic to client
• Maintain global pool of SRU tokens
• Servers must obtain SRU token to send data
• Limited #/tokens based on “sweet spot”
• Many interesting ways to distribute tokens

• Can use separate token authority
– Resides at client or distributed
– Load balance requests

http://www.pdl.cmu.edu/ Elie Krevat © November 07

Outline

• Motivation: TCP throughput collapse

• TCP- and Ethernet-level improvements

• Possible application-level solutions

Conclusions

http://www.pdl.cmu.edu/ 21 Elie Krevat © November 07

Conclusions
• Synchronized Reads + TCP timeouts

Throughput Collapse
• TCP- and Ethernet-level improvements

• Not a complete solution
• Potential for application-level solutions

• Storage system has more knowledge and control
• Can avoid overloading network

http://www.pdl.cmu.edu/ 22 Elie Krevat © November 07

