

Towards an I/O Tracing Framework Taxonomy

Andy Konwinski John Bent, James Nunez, Meghan Quist LA-UR-07-7660

Los Alamos National Laboratory

Overview

- Motivation, background
- Survey several I/O Tracing frameworks
- Define a taxonomy
 - Identify features
- Use taxonomy to classify and compare tracing frameworks

Motivation for a Taxonomy

- LANL Commitment to release I/O traces to HPC research community.
- What tool to use?
- Use existing or build our own?
- Need a way to compare tools.

Checkpoint

- Motivation, background
- Survey several I/O Tracing frameworks
- Define a taxonomy
 - -Identify features
- Use taxonomy to classify and compare tracing frameworks

I/O Tracing Framework Survey

- Tracefs
- //TRACE ("Parallel Trace")
- Introducing LANL-Trace

Tracefs - Overview

- Stackable File System
- Kernel module
- Advantages
 - Many advanced features (anonymization, compression, ...)
 - Portable
- Disadvantages
 - Doesn't run "out of the box" with parallel FS
 - Have to run as Root, load kernel module
 - Does not trace mpi calls or dependencies

//TRACE

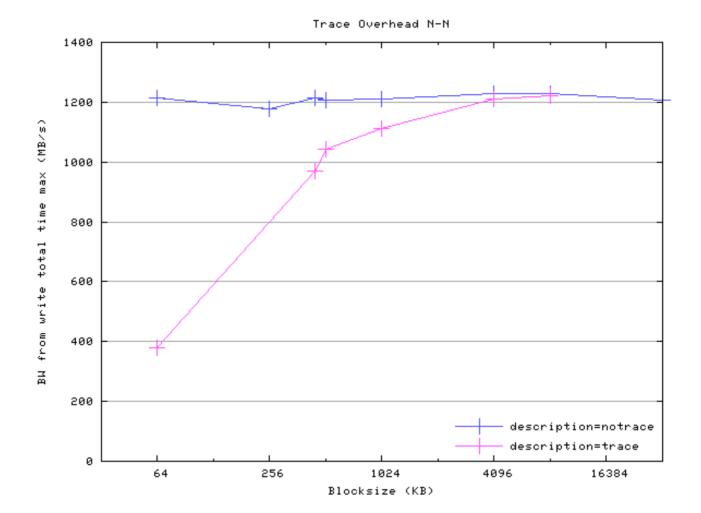
- System call interposition
- Advantages
 - Focus on replayable traces
 - Built with distributed applications in mind
 - Control over time-accuracy trade-off (via sampling)
- Disadvantages
 - Potentially high overhead tracing time
 - Highly focused on replay
 - fewer features
 - Less granularity control

LANL-Trace

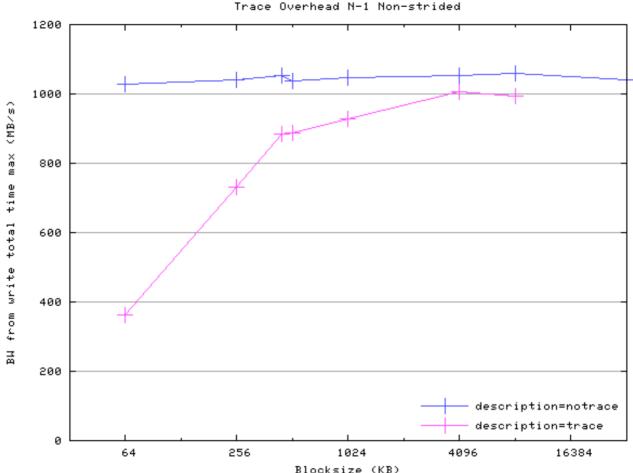
- Built our own tool
- Wrappers around popular strace and ltrace
- Advantages
 - Simple, built into linux, no significant installation
 - Easy to use
- Disadvantages
 - High overhead tracing time (because of ltrace)

More on LANL-Trace

- Unique opportunity to profile LANL-Trace as we build it.
- What are outputs
- What is overhead

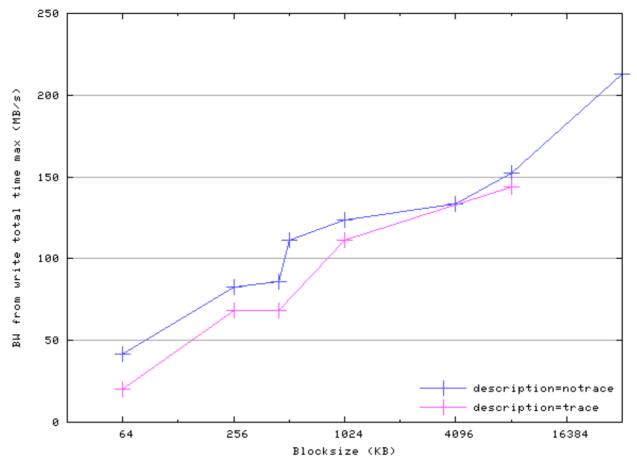

LANL-Trace :: Output

- Raw ltrace output
- Drift and skew timing data
- Function call summary count


LANL-Trace :: Measuring Bandwidth Overhead

- •Synthetic application, mpi_io_test
- •32 nodes, Linux 2.6.14
- Interconnect: ethernet gige
- •MPI library: mpich 1.2.6
- •One run for each:
 - •N-to-N
 - •N-to-1 strided
 - •N-to-1 non-strided

LANL-Trace Overhead N-N


LANL-Trace Overhead N-to-1 Non Strided

BIOCKSIZE (KB)

LANL-Trace Overhead N-1 Strided

Trace Overhead N-1 Strided

Checkpoint

- Motivation background
- Survey several I/O Tracing frameworks
- Define a taxonomy
 - -Identify features
- Use taxonomy to classify and compare tracing frameworks

Why build a Taxonomy?

- Identify similarities and differences between frameworks
- Identify trade-offs
 - Features
 - Overheads
- Enable informed decisions:
 - Should we build our own?
 - What are the "costs" of using a currently existing one?
 - Which one should we use?

Target Users of Taxonomy

- Tracing Framework Consumers
 - application developers Debugging
 - End users Optimizing
 - System Administrators Installing & maint
 - System operators Performance monitors
 - Researchers sharing (and all of above)
- Tracing Framework Developers
 - Guide future development
 - What is in demand
 - Where are gaps in current TF domain?

The Taxonomy Qualitative Features

- •Parallel file system compatibility
- •Ease of installation
- •Ease of use
- •Anonymization
- •Event types
- •Control of trace granularity
- •Replayable trace generation
- •Trace replay fidelity
- •Reveals Dependencies
- •Intrusive vs. Passive
- •Analysis tools
- •Trace data format

LANL-Trace Quantitative Features

- Bandwidth overhead
- Elapsed time overhead

-- Taxonomy --Full Summary Table

Feature	<i framework="" name="" o="" tracing=""></i>	
Anonymization	[None or 1 (Simple) thru 5 (V. Advanced)]	
Events types	[Systems calls, library calls, FS events]	
Control of trace granularity	[Yes or No]	
Replayable trace generation	[Yes or No]	
Trace replay fidelity	Describe experiment results	
Reveals dependencies	[Yes or No]	
Intrusive vs. Passive	[1 (V. Passive), thru 5 (V. Intrusive)]	
Analysis tools	[Yes or No]	
Trace data format	[Binary or Human readable]	
Tracing time overhead	Describe experiment results	

Checkpoint

- Motivation background
- Survey several I/O Tracing frameworks
- Defining a taxonomy
 Identify features
- Use taxonomy to classify and compare tracing frameworks

Taxonomy Comparison Table

Feature	LANL Trace	Tracefs	//TRACE
Parallel file system compatibility	Yes	No	Yes
Ease of installation and use	2 (Easy)	4 (Difficult)	2 (Easy)
Anonymization	No	4 (Advanced)	No
Events types	Systems calls, library calls	File system operations	I/O System calls
Control of trace granularity	1 (Simple)	5 (V. Advanced)	Yes
Replayable trace generation	No	No	Yes
Trace replay fidelity	N/A	N/A	As low as 6% ¹
Reveals dependencies	No	No	Yes
Intrusive vs. Passive	1 (Passive)	1 (Passive)	1 (Passive)
Analysis tools	No	No	No
Trace data format	Human readable	Binary	Human readable
Tracing time overhead	24% - 200%+	² 12.4%	N/A

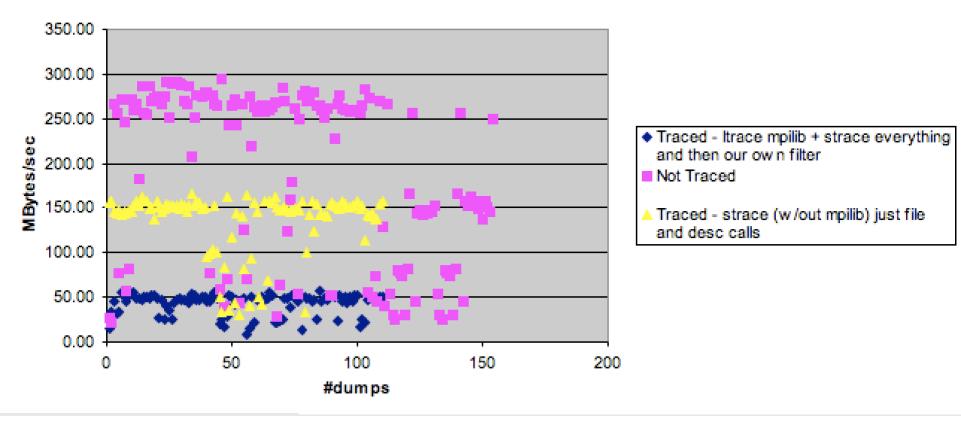
Conclusions

- Taxonomy provide common language
 - Users to build shopping list
 - Developers to build feature lists
 - Both to find each other
- Most tracing performance highly variable by I/O access pattern
 - LANL-Trace experiment

Future Work

- Classify more tracing mechanisms
 - A few in the queue right now
- Expand taxonomy's feature dictionary
 - Secondary features, e.g. if a TF generates replayable traces, are they accurate?
- Explore the overhead dimension.
 - Right now too apples to oranges
- Expand the Taxonomy beyond I/O to other tracing and logging tools
- Towards a common distributed application tracing API

Questions?


Our Shopping List

- Parallel workloads
- Low elapsed time tracing overheads

– V. large applications

- Workload flexibility (synthetic/non, n->1, n->n)
- High fidelity replays

LANL-Trace bandwidth on a *real code* • Physics code (Shockwave), N->1, Strided

App1

Case Study :: LANL-Trace

Feature	LANL-Trace	
Parallel file system compatibility	Yes	
Ease of installation and use	2 (Easy)	
Anonymization	1 (Simple)	
Events types	Systems calls, library calls	
Control of trace granularity	1 (Simple)	
Replayable trace generation	No	
Trace replay fidelity	N/A	
Reveals dependencies	No	
Intrusive vs. Passive	1 (Passive)	
Analysis tools	No	
Trace data format	Human readable	
Tracing time overhead (Elapsed)	234.72% to 25.65%(N-to-N)	
Tracing time overhead (Bandwidth)	5.5% to 51.3% (N-to-1 strided)	
	6.1% to 64.7% (N-to-1 non-strided)	
	0.6% to 68.6% (N-to-N)	

LANL-Trace Output :: Timings (capture skew and drift)

Barrier before /home2/johnbent/Testing/mpi io test/src/mpi io test.caddy.x "-type" "1" "-strided" "1" "-size" "32768" "-nobj" "1" 7: cadillac113.ccstar.lanl.gov (10378) Entered barrier at 1159808385.170918 7: cadillac113.ccstar.lanl.gov (10378) Exited barrier at 1159808385.173167 3: cadillac117.ccstar.lanl.gov (11335) Entered barrier at 1159808385.166396 3: cadillac117.ccstar.lanl.gov (11335) Exited barrier at 1159808385.168893 5: cadillac115.ccstar.lanl.gov (10373) Entered barrier at 1159808385.168842 5: cadillac115.ccstar.lanl.gov (10373) Exited barrier at 1159808385.171370 6: cadillac114.ccstar.lanl.gov (10315) Entered barrier at 1159808385.168138 6: cadillac114.ccstar.lanl.gov (10315) Exited barrier at 1159808385.170176 4: cadillac116.ccstar.lanl.gov (10272) Entered barrier at 1159808385.167178 4: cadillac116.ccstar.lanl.gov (10272) Exited barrier at 1159808385.169087 2: cadillac118.ccstar.lanl.gov (9349) Entered barrier at 1159808385.169788 2: cadillac118.ccstar.lanl.gov (9349) Exited barrier at 1159808385.172046 1: cadillac119.ccstar.lanl.gov (16609) Entered barrier at 1159808385.161409 1: cadillac119.ccstar.lanl.gov (16609) Exited barrier at 1159808385.164020 0: cadillac110.ccstar.lanl.gov (23522) Entered barrier at 1159808385.171889 0: cadillac110.ccstar.lanl.gov (23522) Exited barrier at 1159808385.174143 # Barrier after /home2/johnbent/Testing/mpi_io_test/src/mpi_io_test.caddy.x "-type" "1" "-strided" "1" "-size" "32768" "-nobj" "1" 5: cadillac115.ccstar.lanl.gov (10436) Entered barrier at 1159808388.577588 5: cadillac115.ccstar.lanl.gov (10436) Exited barrier at 1159808388.685647 4: cadillac116.ccstar.lanl.gov (10334) Entered barrier at 1159808388.575882

LANL-Trace Output :: snippet (from a single proc)

10:59:47.092996 MPI File open(92.0x80675c0.37.0x80675a8.0xbfdfe5e4 <unfinished ...> 10:59:47.093718 SYS statfs64(0x80675c0, 84, 0xbfdfe410, 0xbfdfe410, 0xbd3ff4) = 0 < 0.011131> 10:59:47.105818 SYS open("/etc/hosts", 0, 0666) = 3 < 0.000034> 10:59:47.105913 SYS fcntl64(3, 1, 0, 0, 0xbd3ff4) = 0 < 0.000017> 10:59:47.105986 SYS fcntl64(3, 2, 1, 1, 0xbd3ff4) = 0 < 0.000016> 10:59:47.106055 SYS fstat64(3, 0xbfdfde6c, 0xbd3ff4, 0x8068010, 8192) = 0 <0.000018> 10:59:47.106124 SYS mmap2(0, 4096, 3, 34, -1) = 0xb7f48000 < 0.000024> 10:59:47.106199 SYS read(3, "# Do not remove the following li"..., 4096) = 4096 < 0.000061> 10:59:47.106461 SYS read(3, "llac55 pink-cadillac55 pc55\n10.1"..., 4096) = 4096 < 0.000032> 10:59:47.106683 SYS read(3, "0\n10.128.204.111 cadillac111.ccs"..., 4096) = 4096 < 0.000020> 10:59:47.106784 SYS close(3) = 0 < 0.000019> 10:59:47.106842 SYS munmap(0xb7f48000, 4096) = 0 < 0.000031> 10:59:47.108236 SYS umask(022) = 077 < 0.00016 >10:59:47.108290 SYS_umask(077) = 022 < 0.000015> 10:59:47.108352 SYS_open("/panfs/REALM1/scratch/johnbent/O"..., 32832, 0600) = 3 < 0.000745> 10:59:47.109189 SYS close(3) = 0 < 0.000063> 10:59:47.109310 SYS_open("/panfs/REALM1/scratch/johnbent/O"..., -2147450814, 0600) = 3 < 0.000564> 10:59:47.110912 <... MPI File open resumed>) = 0 < 0.017855>

.

LANL-Trace :: Output Function call summary (from a single proc)

# SUMMAF # Function Name # ====================================	RY COUNT OF TRACED CALL(S) Number of Calls	Total time (s)				
 MPI_Info_get_nkeys	1	0.000056				
MPI_Init	1	1.730996				
SYS_mmap2	24	0.000495				
# SUMMARY	COUNT OF NON-TRACED CALL(S)					
# Function Name	Number of Calls	Total time (s)				
# =====================================		===================				
SYS_getuid32	1	0.000016				
SYS_rt_sigaction	70	0.001235				
# SUMMARY COUNT OF CALLS WITHIN 29 MPI_Barrier CALL(S)						
# Function Name	Number of Calls	Total time (s)				
# =====================================						
SYSnewselect	1832	2.032321				
SYS_ipc	170	0.002903				

•••