
Towards an I/O Tracing
Framework Taxonomy

Andy Konwinski
John Bent, James Nunez, Meghan Quist

LA-UR-07-7660

Los Alamos National Laboratory

Overview

• Motivation, background
• Survey several I/O Tracing frameworks
• Define a taxonomy

– Identify features
• Use taxonomy to classify and compare

tracing frameworks

Motivation for a Taxonomy

• LANL Commitment to release I/O traces
to HPC research community.

• What tool to use?
• Use existing or build our own?
• Need a way to compare tools.

Checkpoint

• Motivation, background
• Survey several I/O Tracing frameworks
• Define a taxonomy

– Identify features
• Use taxonomy to classify and compare

tracing frameworks

I/O Tracing
Framework Survey

• Tracefs
• //TRACE (“Parallel Trace”)
• Introducing LANL-Trace

Tracefs - Overview
• Stackable File System
• Kernel module
• Advantages

– Many advanced features (anonymization,
compression, …)

– Portable
• Disadvantages

– Doesn’t run “out of the box” with parallel FS
– Have to run as Root, load kernel module
– Does not trace mpi calls or dependencies

//TRACE
• System call interposition
• Advantages

– Focus on replayable traces
– Built with distributed applications in mind
– Control over time-accuracy trade-off (via

sampling)
• Disadvantages

– Potentially high overhead tracing time
– Highly focused on replay

• fewer features
• Less granularity control

LANL-Trace

• Built our own tool
• Wrappers around popular strace and
ltrace

• Advantages
– Simple, built into linux, no significant installation
– Easy to use

• Disadvantages
– High overhead tracing time (because of ltrace)

More on LANL-Trace

• Unique opportunity to profile LANL-
Trace as we build it.

• What are outputs
• What is overhead

LANL-Trace :: Output

• Raw ltrace output
• Drift and skew timing data
• Function call summary count

LANL-Trace :: Measuring
Bandwidth Overhead

•Synthetic application, mpi_io_test
•32 nodes, Linux 2.6.14
•Interconnect: ethernet gige
•MPI library: mpich 1.2.6
•One run for each:

•N-to-N
•N-to-1 strided
•N-to-1 non-strided

LANL-Trace Overhead N-N

LANL-Trace Overhead
N-to-1 Non Strided

LANL-Trace Overhead N-1
Strided

Checkpoint

• Motivation - background
• Survey several I/O Tracing frameworks
• Define a taxonomy

– Identify features
• Use taxonomy to classify and compare

tracing frameworks

Why build a Taxonomy?
• Identify similarities and differences

between frameworks
• Identify trade-offs

– Features
– Overheads

• Enable informed decisions:
– Should we build our own?
– What are the “costs” of using a currently

existing one?
– Which one should we use?

Target Users of Taxonomy

• Tracing Framework Consumers
– application developers - Debugging
– End users - Optimizing
– System Administrators - Installing & maint
– System operators - Performance monitors
– Researchers - sharing (and all of above)

• Tracing Framework Developers
– Guide future development
– What is in demand
– Where are gaps in current TF domain?

The Taxonomy
Qualitative Features

•Parallel file system compatibility
•Ease of installation
•Ease of use
•Anonymization
•Event types
•Control of trace granularity
•Replayable trace generation
•Trace replay fidelity
•Reveals Dependencies
•Intrusive vs. Passive
•Analysis tools
•Trace data format

LANL-Trace
Quantitative Features

• Bandwidth overhead
• Elapsed time overhead

-- Taxonomy --
Full Summary Table

Feature <I/O Tracing Framework Name>

Anonymization [None or 1 (Simple) thru 5 (V. Advanced)]

Events types [Systems calls, library calls, FS events]

Control of trace granularity [Yes or No]

Replayable trace generation [Yes or No]

Trace replay fidelity Describe experiment results

Reveals dependencies [Yes or No]

Intrusive vs. Passive [1 (V. Passive), thru 5 (V. Intrusive)]

Analysis tools [Yes or No]

Trace data format [Binary or Human readable]

Tracing time overhead Describe experiment results

Checkpoint

• Motivation - background
• Survey several I/O Tracing frameworks
• Defining a taxonomy

– Identify features
• Use taxonomy to classify and compare

tracing frameworks

Taxonomy Comparison Table

Feature LANL Trace Tracefs //TRACE

Parallel file system compatibility Yes No Yes

Ease of installation and use 2 (Easy) 4 (Difficult) 2 (Easy)

Anonymization No 4 (Advanced) No

Events types Systems calls,
library calls

File system
operations I/O System calls

Control of trace granularity 1 (Simple) 5 (V. Advanced) Yes

Replayable trace generation No No Yes

Trace replay fidelity N/A N/A As low as 6% 1

Reveals dependencies No No Yes

Intrusive vs. Passive 1 (Passive) 1 (Passive) 1 (Passive)

Analysis tools No No No

Trace data format Human readable Binary Human readable

Tracing time overhead 24% - 200%+ ²12.4% N/A

Conclusions
• Taxonomy provide common language

– Users to build shopping list
– Developers to build feature lists
– Both to find each other

• Most tracing performance highly variable by
I/O access pattern

– LANL-Trace experiment

Future Work
• Classify more tracing mechanisms

– A few in the queue right now
• Expand taxonomy’s feature dictionary

– Secondary features, e.g. if a TF generates
replayable traces, are they accurate?

• Explore the overhead dimension.
– Right now too apples to oranges

• Expand the Taxonomy beyond I/O to other
tracing and logging tools

• Towards a common distributed application
tracing API

Questions?

Our Shopping List

• Parallel workloads
• Low elapsed time tracing overheads

– V. large applications
• Workload flexibility (synthetic/non, n->1,

n->n)
• High fidelity replays

LANL-Trace bandwidth
on a real code

• Physics code (Shockwave), N->1,
Strided

Case Study :: LANL-Trace
Feature LANL-Trace

Parallel file system compatibility Yes

Ease of installation and use 2 (Easy)

Anonymization 1 (Simple)

Events types Systems calls, library calls

Control of trace granularity 1 (Simple)

Replayable trace generation No

Trace replay fidelity N/A

Reveals dependencies No

Intrusive vs. Passive 1 (Passive)

Analysis tools No

Trace data format Human readable

Tracing time overhead (Elapsed) 234.72% to 25.65%(N-to-N)

Tracing time overhead (Bandwidth) 5.5% to 51.3% (N-to-1 strided)

6.1% to 64.7% (N-to-1 non-strided)

0.6% to 68.6% (N-to-N)

LANL-Trace Output :: Timings
(capture skew and drift)

Barrier before /home2/johnbent/Testing/mpi_io_test/src/mpi_io_test.caddy.x "-type" "1" "-strided" "1" "-size" "32768" "-nobj" "1”
7: cadillac113.ccstar.lanl.gov (10378) Entered barrier at 1159808385.170918
7: cadillac113.ccstar.lanl.gov (10378) Exited barrier at 1159808385.173167
3: cadillac117.ccstar.lanl.gov (11335) Entered barrier at 1159808385.166396
3: cadillac117.ccstar.lanl.gov (11335) Exited barrier at 1159808385.168893
5: cadillac115.ccstar.lanl.gov (10373) Entered barrier at 1159808385.168842
5: cadillac115.ccstar.lanl.gov (10373) Exited barrier at 1159808385.171370
6: cadillac114.ccstar.lanl.gov (10315) Entered barrier at 1159808385.168138
6: cadillac114.ccstar.lanl.gov (10315) Exited barrier at 1159808385.170176
4: cadillac116.ccstar.lanl.gov (10272) Entered barrier at 1159808385.167178
4: cadillac116.ccstar.lanl.gov (10272) Exited barrier at 1159808385.169087
2: cadillac118.ccstar.lanl.gov (9349) Entered barrier at 1159808385.169788
2: cadillac118.ccstar.lanl.gov (9349) Exited barrier at 1159808385.172046
1: cadillac119.ccstar.lanl.gov (16609) Entered barrier at 1159808385.161409
1: cadillac119.ccstar.lanl.gov (16609) Exited barrier at 1159808385.164020
0: cadillac110.ccstar.lanl.gov (23522) Entered barrier at 1159808385.171889
0: cadillac110.ccstar.lanl.gov (23522) Exited barrier at 1159808385.174143
Barrier after /home2/johnbent/Testing/mpi_io_test/src/mpi_io_test.caddy.x "-type" "1" "-strided" "1" "-size" "32768" "-nobj" "1”
5: cadillac115.ccstar.lanl.gov (10436) Entered barrier at 1159808388.577588
5: cadillac115.ccstar.lanl.gov (10436) Exited barrier at 1159808388.685647
4: cadillac116.ccstar.lanl.gov (10334) Entered barrier at 1159808388.575882
…

LANL-Trace Output :: snippet
(from a single proc)

…..
10:59:47.092996 MPI_File_open(92, 0x80675c0, 37, 0x80675a8, 0xbfdfe5e4 <unfinished ...>
10:59:47.093718 SYS_statfs64(0x80675c0, 84, 0xbfdfe410, 0xbfdfe410, 0xbd3ff4) = 0 <0.011131>
10:59:47.105818 SYS_open("/etc/hosts", 0, 0666) = 3 <0.000034>
10:59:47.105913 SYS_fcntl64(3, 1, 0, 0, 0xbd3ff4) = 0 <0.000017>
10:59:47.105986 SYS_fcntl64(3, 2, 1, 1, 0xbd3ff4) = 0 <0.000016>
10:59:47.106055 SYS_fstat64(3, 0xbfdfde6c, 0xbd3ff4, 0x8068010, 8192) = 0 <0.000018>
10:59:47.106124 SYS_mmap2(0, 4096, 3, 34, -1) = 0xb7f48000 <0.000024>
10:59:47.106199 SYS_read(3, "# Do not remove the following li"..., 4096) = 4096 <0.000061>
10:59:47.106461 SYS_read(3, "llac55 pink-cadillac55 pc55\n10.1"..., 4096) = 4096 <0.000032>
10:59:47.106683 SYS_read(3, "0\n10.128.204.111 cadillac111.ccs"..., 4096) = 4096 <0.000020>
10:59:47.106784 SYS_close(3) = 0 <0.000019>
10:59:47.106842 SYS_munmap(0xb7f48000, 4096) = 0 <0.000031>
10:59:47.108236 SYS_umask(022) = 077 <0.000016>
10:59:47.108290 SYS_umask(077) = 022 <0.000015>
10:59:47.108352 SYS_open("/panfs/REALM1/scratch/johnbent/O"..., 32832, 0600) = 3 <0.000745>
10:59:47.109189 SYS_close(3) = 0 <0.000063>
10:59:47.109310 SYS_open("/panfs/REALM1/scratch/johnbent/O"..., -2147450814, 0600) = 3 <0.000564>
10:59:47.110912 <... MPI_File_open resumed>) = 0 <0.017855>
……

LANL-Trace :: Output
Function call summary

(from a single proc)
SUMMARY COUNT OF TRACED CALL(S)
Function Name Number of Calls Total time (s)
==
MPI_Info_get_nkeys 1 0.000056
MPI_Init 1 1.730996
SYS_mmap2 24 0.000495
…

SUMMARY COUNT OF NON-TRACED CALL(S)
Function Name Number of Calls Total time (s)
==
SYS_getuid32 1 0.000016
SYS_rt_sigaction 70 0.001235
…

SUMMARY COUNT OF CALLS WITHIN 29 MPI_Barrier CALL(S)
Function Name Number of Calls Total time (s)
==
SYS__newselect 1832 2.032321
SYS_ipc 170 0.002903
…

	Towards an I/O Tracing Framework Taxonomy
	Overview
	Motivation for a Taxonomy
	Checkpoint
	I/O Tracing �Framework Survey
	Tracefs - Overview
	//TRACE
	LANL-Trace
	More on LANL-Trace
	LANL-Trace :: Output
	LANL-Trace :: Measuring Bandwidth Overhead
	LANL-Trace Overhead N-N
	LANL-Trace Overhead�N-to-1 Non Strided
	LANL-Trace Overhead N-1 Strided
	Checkpoint
	Why build a Taxonomy?
	Target Users of Taxonomy
	The Taxonomy�Qualitative Features
	LANL-Trace�Quantitative Features
	 -- Taxonomy --�Full Summary Table
	Checkpoint
	Taxonomy Comparison Table
	Conclusions
	Future Work
	Questions?
	Our Shopping List
	LANL-Trace bandwidth�on a real code
	Case Study :: LANL-Trace
	LANL-Trace Output :: Timings�(capture skew and drift)
	LANL-Trace Output :: snippet �(from a single proc)
	LANL-Trace :: Output�Function call summary�(from a single proc)

