
Summary
Initially, the Adaptable IO System simplifies

the process of crafting I/O routines for
scientific codes through the separation of
the metadata and an API that is nearly as
simple as standard Fortran I/O
statements. The transport mechanisms
underneath were crafted by experts for
optimal performance giving the scientist
the best performance possible for
whatever I/O mechanism chosen. The
separated metadata affords changing
which I/O mechanism is employed by only
changing the XML configuration file. This
affords real apple-to-apple comparisons of
various I/O techniques. Future benefits
include tapping into the data stream for
visualization (such as Visit), data aware
data compression, and integration into
workflow (such as Kepler)

References
1. Lofstead, Abbasi, Docan, Jin, Parashar, Schwan,

Klasky, “Asynchronous I/O for Scientific Codes”,
Petascale Data Storage Workshop at
Supercomputing ’07, Reno, November 2007
(submitted).

2.Docan, Parashar, Lofstead, Schwan, Klasky

“DART: An Infrastructure for High Speed
Asynchronous Data Transfers”, IPDPS 08, Miami,
April 2008 (submitted).

3. Hasan Abbasi, Matthew Wolf, Karsten Schwan. “Live
data workspace: A flexible, dynamic and extensible
platform for petascale applications.” In Cluster
Computing, Austin, TX, September 2007. IEEE
International.

http://www.cc.gatech.edu/~lofstead/adios

Scientific Codes Examined

GTC & GTC_S (fusion)
– Completed (7 types, ~50 vars total)
– HDF-5, Fortran IO, MPI-IO all replaced
Chimera (astrophysics/supernova)
– Implemented and under testing/debugging (~475 vars)
– Uses text and Fortran IO; will create both text and binary
XGC0 & XGC1 (fusion)
– In planning stage
– New requirements for code coupling support
S3D (combustion)
– In planning stage
– Lots of vars

ADaptableADaptable

IO System (ADIOS)IO System (ADIOS)
for Scientific Codesfor Scientific Codes

Jay Lofstead, Scott Klasky, Hasan Abbasi, Karsten Schwan
lofstead@cc.gatech.edu, klasky@ornl.gov, {habbasi, schwan}@cc.gatech.edu

Center for Experimental Research in Computer Systems
College of Computing, Georgia Tech & Oak Ridge National Laboratory

Flexible I/O
–

Scientific codes should choose the IO method that
makes sense for their needs and change to what
provides the level of functionality required later,
without having to rewrite the IO routines.
–

External metadata file documents I/O for more
transparency and easier changes.
–

Synchronous APIs support simple I/O while
asynchronous can later be tested to determine how
well it will work with the communication patterns.
– Optimized routines for free
Downstream Processing
–

Perform expensive communication operations on
cheaper resources
–

Provide data safety while reducing files through
offline consolidation—only if the data is verified.
–

Integrate with Visit or Kepler

by tapping into the
datastream

rather than rewriting the code
–

Inline lossless or data aware lossy

compression on
the way to storage
–

Automatic migration of completed data to offline
storage to avoid running out of space.
Intelligent Data Movement
–

Schedule movement off compute nodes according to
compute/communication cycles.
–

Manage storage actively to avoid contention issues to
ensure best end-to-end times for all running codes.

Project Goals
Reduce IO overhead IO down to 5%

of
total runtime or less.

Simple API

for Fortran and C nearly as
simple as Fortran standard IO

External metadata

file describing data

and transport selection that is parsed at

runtime for greatest flexibility in transport
selection and configuration. Uses XML

for
compatibility.

Enable more frequent writing

due to

reduced IO costs.

Both synchronous

and asynchronous

transports supported without code changes.
Free

hooks into visualization

and
workflow

systems through the data flows.

API Example, Part 1ADIOS API Architecture

API Example, Part 2
Restart Writing
call adios_get_type (io_type, 'restart')
call adios_group_by (io_type, 'mzeta',

comm, previous, current, next)
...
call adios_open (group_handle,

io_type, 'restart.01')
call adios_write (group_handle,

'zion', zion)
...
ADIOS_WRITE (group_handle,

mzeta)
...
call adios_close (group_handle)

Metadata XML File
<ioconfig><datatype

name=“restart”>
<scalar name=“mzeta”

type=“integer”

write=“no”/>
<dataset name=“zion”

type=“double”

dimensions=“nparam,mi”/>
</datatype>
<method priority=“1”

method=“PBIO”

iterations=“100”

base-path=“/tmp/work/ge1”

type=“restart”>params</method>
<buffer size-MB=“100”

allocate-

time=“now”/></ioconfig>

Results
GTC
Initial performance results on the Cray XT3/XT4 at

ORNL and Inifiniband

cluster showed
(asynchronous I/O):

25 GB/s on the Cray
2.5 GB/s on the Infiniband

cluster

GTC_S
Initial performance results on the Cray XT3/XT4 at

ORNL (1024 cores, ~1 GB filesize, every 10
iteration writes, synchronous non-collective MPI-

IO, mzeta

files): 12 GB/s

GTC (with DART)
Initial performance results on the Cray XT3/XT4 at

ORNL (2048 cores): 0.4 GB/s streamed through to
the Infiniband

cluster

Chimera
Still testing

Supported Transports

POSIX IO
– Both reading and writing
MPI-IO
– Using optimized approach from Steven Hodson (ORNL)
LIVE/DataTap

(Georgia Tech)
– Asynchronous support
DART (Rutgers)
– Asynchronous support
Parallel netCDF
– In development
HDF-5
– In development

Scientific Codes

ADIOS API

D
A

R
T

LIV
E/D

ataTap

M
PI-IO

PO
SIX

 IO

H
D

F-5

pnetC
D

F

O
thers (plug-in)

External
Metadata

(XML file)

call adios_init ('config.xml')
...
! do main loop
call adios_begin_calculation ()
! do non-communication work
call adios_end_calcuation

()
...
! perform restart write
...
! do communication work
call adios_end_iteration ()
! end loop
...
call adios_finalize ()

	Slide Number 1

