
GIGA+: Scalable Directories for Shared File Systems
(or, How to build directories with trillions of files)

Problem: Scalable Directories

Swapnil V. Patil and Garth A. Gibson

Need high performance metadata services
• Most file systems store a directory on a single MDS
• New trends need large metadata services

• Apps generating millions of small files in a directory, like 
a simple database

• Large apps run in parallel on clusters of 100,000s of CPUs

Build scalable directories for shared file-systems
• POSIX-compliant, maintain UNIX file system semantics
• Store trillions of files and handle >100K operations/second

Goal: More Scalability Through More Parallelism
Minimize serialization
• Avoid ordered splitting of partitions, like LH* [Litwin96] 

Eliminate system-wide synchronization
• Avoid using cache consistency and distributed locking, 

like GPFS [Schmuck02]

GIGA+ distributed indexing divides divides a directory into 
partitions, spread across multiple servers

• Enables highly incremental, unsynchronized, and 
load-balanced growth

GIGA+ Technique

Allows servers to grow their partitions independently
• Only maintain local state about their partitions
• Keep “split history” of their partitions

Tolerates out-of-date partition-to-server maps at the client
• Due to unsynchronized growth, map becomes state & 

inconsistent
• Copies updated lazily, on addressing an incorrect server

GIGA+ optimizations

Power-of-2 optimization (when number of servers = 2^D)
• Below tree depth D, all split operations create partitions 

on the same server
• Splitting network traffic becomes zero
• Client bitmap errors go to zero (client bitmap only needs 

to represent first D rows of split tree)

Addition of servers with minimal redistribution
• If the number of servers is doubled, half the partitions of 

every current server move to the new servers

Other GIGA+ systems issues

Unique, self-describing bitmap to map partitions on a server
• Tracks presence or absence of a partition and its split 

history
• Deterministic search of best server to send the request
• Efficiently send many bitmap updates to erroneous clients
• Compact: billion file directory, in 16 KB

p{0-1}before
insert()

p{0-1}

p{0-.5}

after
insert()

(split) p{.5-1}

 Active partition insert()

i = 0
s = Y

Server (i % num_servers) in Fig.1S =

i = 0
s = Y

i = 1
s = G

 Old partition

i in Pi from Fig.1i =

Depth (r) = 1

p{0-1}

p{0-.5} P{.5-1}

p{.25-.5}

p{.5-1}

before
insert()

(split) Depth (r) = 1

p{0-.25}

i = 1
s = G

i = 2
s = R

i = 0
s = Y

p{0-1}

p{0-.5} P{.5-1}

p{.25-.5}

p{.5-1}

after
insert()

(split)

p{0-.25}

i = 1
s = G

i = 0
s = Y

p{.25-.375} p{.375-.5}
i = 2
s = R

i = 6
s = Y

Depth (r) = 2

Depth (r) = 1

Depth (r) = 2

Depth (r) = 3

p{0-1}

p{0-.5}

before
insert()

p{0-1}

p{0-.5} P{.5-1}

p{.25-.5}

p{.5-1}

after
insert()

(split)

p{.5-1}

p{0-.25}

i = 0
s = Y

i = 1
s = G

i = 1
s = G

i = 2
s = R

i = 0
s = Y

Depth (r) = 1

Depth (r) = 1

Depth (r) = 2

Handles client and server failures
• Use “uniform de-clustered replication” that 

deterministically replicates each server’s state spread 
across all remaining servers

• Enables load-balanced failover and fast, parallel recovery

Investigating schemes for efficiently adding any number of 
servers (not just doubling the number of servers)
• Inspired by consistent hashing


