
GIGA+:
Scalable Directories

for
Shared File Systems

Swapnil V. Patil

Garth Gibson and Milo Polte (PDL @ CMU)
Sam Lang (Argonne National Lab)

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 2

Pushing Scale: googol = 10100

• If things get big - really big - most systems
can break easily
– “Push the limits” in scalability by targeting

numbers that break current designs

• Start with building a file system that has
really, really huge directories
– Scale to store billions to trillions of files in a dir
– Handle more than 100K operations/second

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 3

Why do this - “huge directories”?
• Parallel FS already scale file size and

concurrent access, what’s next …
– Customers want directories with more than million entries

• Applications sometimes use the file system as a
fast, lightweight “database”

• Large number of small files written in a directory
– Logging phone records
– Check-pointing large clusters
– Scientific experiments (genomics, physics)

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 4

Increasing parallelism
• Applications becoming highly parallel

– Large compute clusters
 Today 1000s of nodes, soon 10000s nodes

– More cores per CPU

• So, solutions must scale in concurrency and
shared memory should not be assumed

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 5

Outline
• Introduction and motivation
• Related work

– Current systems and how they limit scalability
• GIGA+ in action
• GIGA+ techniques
• Status and summary

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 6

Out-of-core indexing structures
• B-trees vs hash-table

– XFS [Sweeney96], Ext2/Ext3 [Tso02]
– Use hash-table for O(1) lookups
– B-trees support range queries, hash-tables don’t

 File system API doesn’t support range queries

• Need incremental growth of the directory
– Small directory performance not penalized

• Use extendible hashing [Fagin79]

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 7

Extendible Hashing [Fagin79]

hash(“bar”) = 1001…011

RADIX: r-bit suffix of hash,
used to index into the table
(R = 1-bit)

F1, F3 ..

F2, F4 ..

Header-table Partitions

• Header-table points to partitions
– Each entry holds a pointer to a single partition
– One partition can be pointed to by multiple entries

1
0

Full!

Hash keys for load-balancing

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 8

Extendible Hashing [Fagin79]

3
2
1
0RADIX increases, that

uses the growing table
(R = 2 bits)

F1, F3 ..

F2, …

Header-table Partitions

F4, bar

hash(“bar”) = 1001…011

F2, F4 ..

F4, …

• Header-table doubles, if necessary
– On splitting, the new partitions distribute their keys

Hash keys for load-balancing

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 9

Extendible hashing on single server

Network

a

b

[Fagin79] designed
for single machine
– Limited scalability

Clients

F1, F3 ..

F2, …

F4, bar

Header-table Partitions

Server

3
2
1
0

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 10

Extendible hashing on >1 machine
• GPFS [Schmuck02] is a parallel file system

– Uses extendible hashing on multiple machines

• Partitions are stored on the server
– Directory is represented as a large file
– Large files striped on many servers

• Header-table (mapping information) at clients

• How to lookup partitions and get up-to-date
partition-to-server mapping?

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 11

Data cache coherence in GPFS
Dir /foo, represented as a file, striped across servers

P[1] P[2] P[3] P[i] P[N]

• Concurrent access to file data
– Divides a file into multiple regions
– Assign a server to lock these regions during

concurrent access
• Clients get the lock on the region, update it

and write it back
– Data cache coherence can limit scalability

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 12

Caching metadata maps in GPFS
Dir /foo, represented as a file, striped across servers

P[1] P[2] P[3] P[i] P[N]

double
indirect block

indirect block

attributes
inode [/foo]

metadata about /foo
cached at the clients

At high rate of
“insert-mostly”
workload, cache
coherence limits
scaling

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 13

Outline
• Introduction
• Related work
• GIGA+ in action

– Example
• GIGA+ techniques
• Status and summary

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 14

GIGA+ key ideas
• Highly decentralized and parallel growth of

the directory
– Highly decentralized: Decentralized splitting
– Load-balanced: Hash the key

• High concurrency through minimal
synchronization overhead
– Indexing technique that tolerates the use of stale

metadata information

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 15

GIGA+ in action

a

b

Clients

Server

Y

G

R

mapping

RP3

GP2

YP1

RP3

GP2

YP1

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-1}

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 16

GIGA+ in action

a

b

Clients

Servermapping

Y

G

RP3 is full, it splits half into a
new partition, P4 on Y

insert (“F1”)

RP3

GP2

YP1

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-.88}

P4
{.88 - 1}

RP3

GP2

YP1

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 17

GIGA+ in action

a

b

Clients

Server

Y

G

RR keeps “split history” of P[3]
{ P[4], Server Y, …}

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-.88}

P4
{.88 - 1}

mapping

RP3

GP2

YP1

RP3

GP2

YP1

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 18

GIGA+ in action

a

b

Clients

Server

Y

G

RClient gets a reply & updates
its map about P[4]

mapping

RP3

GP2

YP1

RP3

YP4

GP2

YP1

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-.88}

P4
{.88 - 1}

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 19

GIGA+ in action

a

b

Clients

Server

Y

G

R

Client ‘a’ has stale metadata
information

mapping

RP3

GP2

YP1

RP3

YP4

GP2

YP1

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-.88}

P4
{.88 - 1}

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 20

GIGA+ in action

a

b

Clients

Server

Y

G

RR no longer holds the entry,
knows that it split to server Y

find (“F1”)

mapping

RP3

GP2

YP1

RP3

YP4

GP2

YP1

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-.88}

P4
{.88 - 1}

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 21

GIGA+ in action

a

b

Clients

Server

Y

G

RUses “split history” to update
client’s cached metadata map

mapping

RP3

YP4

GP2

YP1

RP3

YP4

GP2

YP1

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-.88}

P4
{.88 - 1}

Cost of stale metadata -
needs some extra hops
(worst case: log(N))

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 22

Outline
• Introduction
• Related work
• GIGA+ in action
• GIGA+ techniques

– Two key architectural features
• Status and summary

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 23

GIGA+ Design Overview
• How to partition the directory using an index

that provides high throughput?
– Highly decentralized: Decentralized splitting
– Load-balanced: Hash the key

• How to tolerate rapid changes to the
metadata mapping?
– Indexing technique that tolerates the use of stale

metadata information

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 24

Growth of the GIGA+ index

• Each server splits its partition when the
partition is full, without telling other servers

P[0-1]

p{0-.5} p{.5-1}

p{0-.25} p{.25-.5} p{.5-.75} p{.75-1}

p{0-1}Active partition
Old partition
Future partition p{.5-1}

Radix 0

Radix 1

Radix 2

p{.5-.62} p{.63-.75}

p{.5-.75}

Radix 3

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 25

GIGA+ indexing: Decentralized
• Highly decentralized and parallel growth of

the index

• GIGA+ partitions uniformly over all servers
– Servers perform their split operation locally
– Metadata updates happen only at splitting server

• Benefits: Reduced synchronization overhead
– No immediate synchronization with clients/servers

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 26

GIGA+ Design Challenges
• How to partition a directory over many

servers?
– Completely decentralized splitting for maximum

concurrency

• How do clients get up-to-date metadata that
maps a partition to the server?
– Tolerate high changes to the metadata mappings

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 27

How do clients reach “right” server?

• Caching all the mapping (links) is ineffective
– At high insert rates, mapping changes fast
– Keeping an “always consistent” cache is expensive

P[0-1]

p{0-.5} P{.5-1}

p{0-.25} p{.25-.5} p{.5-.75} p{.75-1}

p{0-1}Active partition
Old partition
Future partition p{.5-1}

p{.5-.62} p{.63-.75}

p{.5-.75}

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 28

GIGA+ clients: Use stale metadata
• Clients use stale partition-to-server mapping

– Correctness despite out-of-date metadata

• Servers keep “split history” for all its partitions
– Captures the growth of the partition
– “history” = {new_partition, new_server, …}

• Use the “split history” to update client cache
– Server replies with “history” of the partition that the

client was looking for

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 29

Cost of using stale metadata map

P[0-1]

p{0-.5} P{.5-1}

p{.5-.75} p{.75-1}

p{0-1}

p{.5-1}

p{.5-.62} p{.63-.75}

p{.5-.75}

p{…} on same
server; needs
a single probe

p{..} on separate
server;
log(N) probes

• At most, log (# of partitions) extra hops
– Lookup might traverse a path up or down a path

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 30

GIGA+ Design Summary
• Completely decentralized splitting for

maximum concurrency
– Each server splits a partition when it wants,

without synchronizing with the rest of the system

• Indexing technique that allows use stale
metadata mapping at clients
– Servers update clients’ mapping information

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 31

Outline
• Introduction and motivation
• Related work
• GIGA+ in action
• GIGA+ techniques
• Status and summary

– Prototype implementation and evaluation

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 32

Implementation status
• Building prototype in PVFS

– Open-source, user-level cluster file system
 PVFS stores directories on a single server

• Approach
– Implements FS operations as “state-machines”

 Add partition splitting, client updates
– PVFS does not always have a consistent cache

 Clients cache the “mapping information”
 Servers keep “split history” as an attribute of

the partition

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 33

Implementation challenges
• Reducing the extra hops from using stale info

• Efficient representation of partition-to-server
metadata mapping

• “Request storm” prevention to avoid
overloaded servers

• Avoiding bottlenecks at central MDS

 Swapnil V. Patil © November 07PDSI Workshop @ SC 2007 34

Summary: Pushing Scalability
• Directories that store billion to trillion files and

handle >100K operations/second

• Decentralized and parallel growth of directory
over many servers

• Indexing technique allows use of stale
metadata at the clients
– Servers update the clients’ metadata maps

