
HEC POSIX I/O API Extensions

Rob Ross
Mathematics and Computer Science Division
Argonne National Laboratory
rross@mcs.anl.gov

(Thanks to Gary Grider for providing much of the material for this talk!)

POSIX Introduction

 POSIX is the IEEE Portable Operating System Interface for Computing
Environments.

 “POSIX defines a standard way for an application program to obtain basic
services from the operating system”

 POSIX was created when a single computer owned its own file system.
– Network file systems like NFS chose not to implement strict POSIX

semantics in all cases (e.g., lazy access time propagation)
– Heavily shared files (e.g., from clusters) can be very expensive for file

systems that provide POSIX semantics, or have undefined contents for file
systems that bend the rules

 The Open Group (http://www.opengroup.org/) is responsible for the specification
and any subsequent extensions.

APIs for HEC I/O

 POSIX IO APIs (open, close, read, write, stat) have semantics that can
make it hard to achieve high performance when large clusters of
machines access shared storage.

 A working group of HEC users is drafting some proposed API additions
for POSIX that will provide standard ways to achieve higher performance.

 Primary approach is either to relax semantics that can be expensive, or to
provide more information to inform the storage system about access
patterns.

 The goal is to create a standard way to provide high performance and
good semantics

 Three components:
– Good concepts - building blocks for more effective I/O systems
– API definition and standardization - well-defined and capable

interfaces to use these ideas agreed upon by the community
– Implementations - early prototypes to show viability, adoption in

OSes and file systems to provide availability

Contributors

 Lee Ward - Sandia National Lab
 Bill Lowe, Tyce McLarty – Lawrence Livermore National Lab
 Gary Grider, James Nunez – Los Alamos National Lab
 Rob Ross, Rajeev Thakur, William Gropp, Murali Vilayannur -

Argonne National Lab
 Roger Haskin – IBM
 Brent Welch, Marc Unangst - Panasas
 Garth Gibson - Carnegie Mellon University/Panasas
 Alok Choudhary – Northwestern University
 Tom Ruwart - University of Minnesota/IO Performance
 Harriet Coverston - Sun Microsystems
 Others …

Current HEC POSIX Enhancement Areas

 Current “first string”:
– Flexible (if not concise) description of I/O operations

• readx(), writex()
– Metadata (lazy attributes, aggregation)

• statlite() and friends
• readdirplus() and friends

– Coherence – (last writer wins and other such things can be optional)
• O_LAZY, lazyio_propagate(), lazyio_synchronize()

– Efficient name resolution and file open (group file opens)
• openg(), openfh()

 Group locks, ACLs, QoS, and portable hinting are being investigated as well, but
I will focus on the first string.

readx, writex - Efficient I/O Description

 Syntax
ssize_t readx(int fd, const struct iovec *iov, size_t iov_count, struct

xtvec *xtv, size_t xtv_count);
ssize_t writex(int fd, const struct iovec *iov, size_t iov_count, struct

xtvec *xtv, size_t xtv_count);
struct xtvec { off_t xtv_off; /* Starting file offset */

 size_t xtv_len; /* Number of bytes */ };
 Description

– Generalized file vector to memory vector transfer. Existing readv(),
writev() specify a memory vector and do serial IO. The new readx(),
writex() calls also read/write strided vectors to/from files, but regions
may be processed in any order, and iov and xtv need not have the
same number of elements.

– The readx() function reads xtv_count blocks described by xtv from
the file associated with the file descriptor fd into the iov_count multiple
buffers described by iov. The file offset is not changed.

– The writex() function writes at most xtv_count blocks described by
xtv into the file associated with the file descriptor fd from the
iov_count multiple buffers described by iov. The file offset is not
changed.

7

Process 0 Process 0 Process 0Process 0

Impact of readx and writex

 Patterns that are noncontiguous in memory and/or file are all supported
 Underlying implementation may choose to process the regions in any order
 Results in error cases still being ironed out…

Contiguous Noncontiguous
in File

Noncontiguous
in Memory

Noncontiguous
in Both

statlite, fstatlite, lstatlite - Lazy Attributes

 Syntax
int statlite(const char *file_name, struct statlite *buf);
int fstatlite(int filedes, struct statlite *buf);
int lstatlite(const char *file_name, struct statlite *buf);

 Description
– This family of stat calls, the lite family, is provided to allow for file I/O

performance not to be compromised by frequent use of stat information
lookup. Some information can be expensive to obtain when a file is busy.

– They all return a stat structure, which has all the normal fields from the stat
family of calls but some of the fields (e.g., file size, modify time) are
optionally not guaranteed to be correct.

– There is a litemask field that can be used to specify which of the optional
fields you require to be completely correct values returned.

– statlite stats the file pointed to by file_name and fills in buf.
– fstatlite is identical to stat, only the open file pointed to by filedes (as

returned by open(2)) is statlited-ed in place of file_name.

statlite Data Structure

struct statlite {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device)*/
unsigned long st_litemask; /* bit mask for optional fields */
/***/
/**** Remaining fields are optional according to st_litemask ***/
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

};

readdirplus, readdirlite - Aggregating Metadata Operations

 Syntax
struct dirent_plus *readdirplus(DIR *dirp);
int readdirplus_r(DIR *dirp, struct dirent_plus *entry, struct dirent_plus

**result);
struct dirent_lite *readdirlite(DIR *dirp);
int readdirlite_r(DIR *dirp, struct dirent_lite *entry, struct dirent_lite

**result);
 Description

– This family of calls is provided to all the file system to return file
metadata as part of the directory read process. This as a side-effect
aggregates many stat operations together.

– readdirplus(2) and readdirplus_r(2) return a directory entry plus
lstat(2) results (like the NFSv3 READDIRPLUS command)

– readdirlite(2) and readdirlite_r(2) return a directory entry plus
lstatlite(2) results

readdirplus Data Structures

struct dirent_plus {
struct dirent d_dirent; /* dirent struct for this entry */
struct stat d_stat; /* attributes for this entry */
int d_stat_err;

};

 Stat structure embedded with the directory entries
 Separate error value corresponds to stat operation

O_LAZY, lazyio_propagate, lazyio_synchronize - Coherence

 Syntax
Specify O_LAZY in flags argument to open(2)
int lazyio_propagate(int fd, off_t offset, size_t count);
int lazyio_synchronize(int fd, off_t offset, size_t count);

 Description
– Requests lazy I/O data integrity. Allows network filesystem to relax

data coherency requirements to improve performance for shared-
write file. This is a hint only: if filesystem does not support lazy I/O
integrity, does not have to do anything differently.

– Writes may not be visible to other processes or clients until
lazyio_propagate(2), fsync(2), or close(2) is called

– Reads may come from local cache (ignoring changes to file on
backing storage) until lazyio_synchronize(2) is called

– Does not provide synchronization across processes or nodes –
program must use external synchronization (e.g., pthreads, MPI, etc.)
to coordinate actions.

openg, openfh - Name Space Traversal and Collective File Open

 Syntax
int openg(char *path, int mode, fh_t *handle);
int openfh(fh_t *fh);

 Description
– The openg() function opens a file named by path according to mode

(e.g., O_RDWR). It returns an opaque file handle corresponding to a
file descriptor. The intent is that the file handle can be transferred to
cooperating processes and converted to a file descriptor with
openfh().

– The openfh() function shall create an open file descriptor that refers
to the file represented by the fh argument. The file status flags and
file access modes of the open file description shall be set according
to those given in the accompanying openg().

– The lifetime of the file handle is implementation specific. For
example, it may not be valid once all open file descriptors derived
from the handle with openfh() have been closed.

Impact of openg and openfh

 Calls are primarily designed to aid in
efficient implementation of collective
open operations (e.g. MPI_File_open)

 Rely on external communication to
transfer opaque file handle to other
processes

 In some cases, additional processes
perform no communication with file
system to create open file descriptor

...

...

Standard POSIX open model forces all
processes to open a file, causing a
storm of system calls.

...

...

A single openg provides a handle that
is then broadcast to the remaining
processes, who call openfh.

openg and openfh Prototyped

 Here we compare time for N processes to perform independent
open calls versus the openg + MPI_Bcast + N * openfh sequence

 On this system, openg/openfh become a win very quickly
– Less expensive to “collectively open” with 128 processes than

to independently open with 8!

Data from Ruth Klundt (SNL), using Darkstar cluster.

Current Status and Contact Information

 Ideas
– Group has identified short-term and long-term goals for improvements

 Interface Specification
– HEC Extensions working group formed with Open Group
– Draft 0 specification nearing completion, includes calls discussed here

 Implementations
– Prototypes of many calls have been implemented by ANL, UCSC, Sun,

CFS/Cray, etc.
– Source for many of these will be made available soon

 Go to the POSIX HPC I/O Extensions Web site for more information:
www.pdl.cmu.edu/posix/

