

High Performance NFS

Roger Haskin Senior Manager, File Systems IBM Almaden Research Center

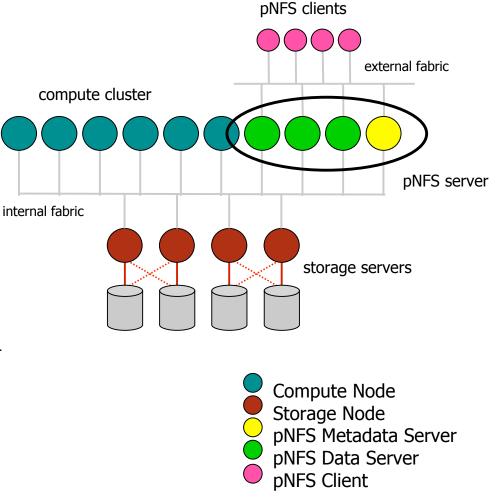
© 2006 IBM Corporation

_	_	-
_	_	

NFS4 and Parallel NFS Work at IBM Research

- IBM Almaden Research has a long history of work on high-performance storage projects
 - The GPFS file system originated at Almaden
- We are participating in the development of NFSv4 features including redirection
- With CITI at University of Michigan, Network Appliance, Panasas and others, we are participating in the development of parallel NFSv4 (pNFS) for Linux

	_	
	_	


High Performance NFS

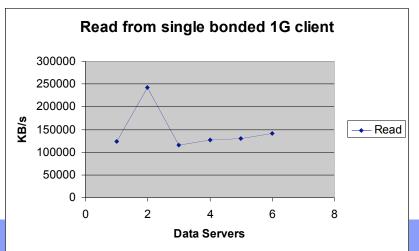
- In the context of this conference, "high performance computing" implies parallel computing...
- ... ergo, though technologies like RDMA are important for individual clients and servers, true "high performance" implies parallel NFS
- Work is progressing on parallel NFSv4 (pNFS), results to date are encouraging
- pNFS in NFSv4.1, now Internet Draft but basically done
 - File variant only
 - Object and block variants in separate Internet draft
- Who is doing what?
 - Sun: Solaris client and server implementation
 - Network Appliance: server implementation for NetApp filers
 - Linux client common code: CITI, NetApp, IBM (Almaden), Panasas
 - Linux client/file driver: CITI, NetApp, Almaden
 - Linux server/file: CITI, Almaden (on GPFS and PVFS file systems)
 - Linux server/object: Panasas
 - Linux server/block: CITI, with support from EMC
- "Bake-a-thon" in September at CITI
 - File variant demoed with Linux & Sun clients, Sun, NetApp, and Linux server, latter running on both GPFS and PVFS

Parallel NFSv4 (pNFS) prototype on GPFS

- pNFS extends NFSv4 to support parallel access
 - Clients use metadata server to create/delete/open/close
 - Clients get map of data from metadata server
 - Map directs clients to data servers for read/write operations
- Linux pNFS prototype on GPFS
 - GPFS modified to enable pNFS metadata server (i.e. to return map)
 - Other GPFS nodes are pNFS data servers
 - GPFS allows any node to be a metadata server, so clients can be load-balanced across the cluster
 - GPFS allows any data server to serve any data; metadata server chooses map to loadbalance across data servers
 - pNFS server cluster can be part of a compute cluster or can be its own standalone pNFS server cluster
 - Similar implementations possible with other parallel file systems

	_	

pNFS performance scaling


- pNFS addresses two scenarios:
 - High-performance (e.g. 10GbE) client driving a server cluster
 - Parallel/cluster clients driving a server cluster
- Test runs on small cluster at CITI
 - Single 10GbE client accessing server cluster of varying size
 - iozone -aec -i 0 -i 1 -+n -r 256K -s 1G -f /mnt/nfs4/io1 -U /mnt/nfs4
 - Varying number of 1GbE clients accessing 1GbE server cluster
 - mpirun -np {1-3} -machinefile /tmp/gpfs.nodes /nas/test/IOR -b 1g -t 32k -g -e -F -o /mnt/ior/t1

	And the second second

Will pNFS conquer the world?

- Probably not soon!
- Main create/delete/open/close/read/write path working, but recovery path still under development
 - Recovery for failed data server is hard
 - Probably a year to complete this at current course and speed
- Don't try this at home, folks!
 - Tuning needed, performance anomalies on less-than-perfect hardware
- Will pNFS compete with parallel file systems?
 - Similar technology (SANergy, High Road) is not ubiquitous in HPC
 - pNFS is clearly better for some access patterns (e.g. file-per-process) than others (parallel access to shared file)
 - NFS consistency semantics
 - File-level delegations
 - Parallel file systems have more opportunity to do global optimization
 - They typically know the cluster members
 - They can see the global activities of the application

