
Peta-scale Data Storage
Research at UCSC

Ethan L. Miller
Carlos Maltzahn

Qin Xin
RJ Honicky

Joel Wu

Scott A. Brandt
Darrell D. E. Long
Sage Weil
Feng Wang
Andrew Leung

University of California, Santa Cruz
Sponsored by LANL, Sandia, LLNL

Peta-scale Data Storage
Challenges
 Massive scale of everything

 Huge files, directories, data
transfers, etc.

 Managing the data
 Coordinating the activity of

thousands of disks
 Managing the metadata

 Unified namespace
 Workload

 Scientific and general purpose
workloads

 Dynamic capacity
 Must be able to grow (or

shrink) dynamically

 Reliability
 Thousands of hard drives ⇒

frequent failures
 Security

 Authentication, encryption, etc.
 Performance

 Hot spot avoidance
 Many possible bottlenecks

 Quality of Service
 Guaranteed performance with

mixed workloads
 Usability

 Finding anything among all of
that information

Ceph
Usage
 POSIX-like interface

 Standard file/directory
semantics

 High-performance direct
access from 100,000+ clients,
to
 Different directories, same

directory, same file
 Mid-performance local access

by visualization workstations
w/QoS

 Wide-area general-purpose
access

Performance
 20 PB storage system

 1–10,000 hard drives
 1 TB/sec aggregate

throughput
 1,000–10,000 hard drives

pumping out data as fast as
they can

 Billions of files
 Bytes to terabytes
 1–100,000+ files/directory

 Very low-latency metadata

Ceph Architecture
Cluster of Metadata
Servers (1–10)

Clients
(10,000+)

Object-
based
Storage
Devices
(1–10,000)

Metadata Cluster Management
1. Lazy Hybrid
2. Dynamic Subtree Partitioning

Client SW
1. Interface
2. Cache Mgmt
3. Workload

characterization

Object Storage
1. OBFS
2. EBOFS

Storage System
1. Data Distribution
2. Reliability
3. Quality of Service
4. Security
5. In-flight data management
6. Distributed Information Retrieval
…

Ceph Research

Today: Ceph Overview (Sage)
 Client operation

 System overview
 Ceph components

 CRUSH pseudo-random data placement
 DSP distributed metadata management
 RADOS reliable, distributed object storage
 EBOFS high-performance object storage

 Evaluation
 Prototype performance numbers

Ceph: A Scalable,
High-Performance

Distributed File System

Sage Weil
University of California, Santa Cruz

Ceph—
Key Design Principles

Maximal separation of data and metadata
 Object-based storage
 Independent metadata management
 CRUSH – data distribution function

Dynamic metadata management
 Adaptive and scalable

 Intelligent disks
 Reliable Autonomic Distributed Object Store

Outline

Maximal separation of data and metadata
 Object-based storage
 Independent metadata management
 CRUSH – data distribution function

Dynamic metadata management
 Adaptive and scalable

 Intelligent disks
 Reliable Autonomic Distributed Object Store

Object Interface

File System

Storage component

ApplicationsApplications

Logical Block Interface

File System

Traditional Storage Object-based Storage

Hard Drive Object-based Storage Device (OSD)

Object-based Storage
Paradigm

Client

Metadata Servers (MDS)

Ceph—
Decoupled Data and Metadata

File System

Applications

Storage component

Object-based Storage Device (OSD)

Metadata Manager

Object Storage Devices (OSDs)

Client

Ceph—
A Simple Example
• fd=open(“/foo/bar”,O_RDONLY);

1. Client: requests open from MDS
2. MDS: reads directory “/foo” from OSDs
3. MDS: issues “capability” for “/foo/bar”

• read(fd,buf,10000);
4. Client: calculates name(s) and location(s)

of data object(s)
5. Client: reads data from OSDs

• close(fd);
6. Client: relinquishes capability to MDS

• MDS stays out of I/O path
• Client doesn’t need to look up the location

of file data

MDS Cluster

Object Storage Cluster

Client

CRUSH—
Simplifying Metadata
 Conventionally

 Directory contents (filenames)
 File inodes

 Ownership, permissions
 File size
 Block list

 CRUSH
 Small “map” completely specifies data distribution
 Eliminates allocation lists
 Inodes “collapse” back into small, almost fixed-sized structures

 Embed inodes into directories that contain them
 No more large, cumbersome inode tables

CRUSH—
Data distribution with a function
 Files striped across many objects

 Striping strategy specified in inode
 object_id = <inode_num, object_num>

 Objects mapped to placement groups (PGs)
 pg_id = hash(object_id) & mask

 CRUSH maps PGs to OSDs
 Pseudo-random distribution
 Statistically uniform
 Replicated on multiple OSDs

 CRUSH is…
 A function—calculable everywhere (no

explicit tables)
 Stable—adding/removing OSDs moves

few objects
 Reliable—replicas span failure domains

 ...everything you’d normally want to do
using conventional allocation tables!

…

…

… … …
…

OSDs
(grouped by
 failure domain)

File

Objects

PGs

OSD Cluster Scaling—
CRUSH vs careful striping

 Higher placement group count reduces statistical variance,
divergence from optimal (write throughput shown)

Outline

Maximal separation of data and metadata
 Object-based storage
 Independent metadata management
 CRUSH – data distribution function

Dynamic metadata management
 Adaptive and scalable

 Intelligent disks
 Reliable Autonomic Distributed Object Store

Metadata—
Traditional Partitioning

 Coarse distribution (static subtree partitioning)
 hierarchical partition preserves locality
 high management overhead: distribution becomes imbalanced as

file system, workload change
 Finer distribution (hash-based partitioning)

 probabilistically less vulnerable to “hot spots,” workload change
 destroys locality (ignores underlying hierarchical structure)

Directory Hashing
 Hash on directory portion

of path only

Coarse partition Fine partition

Static Subtree Partitioning
 Portions of file hierarchy

are statically assigned
to MDS nodes
 (NFS, AFS, etc.)

File Hashing
 Metadata distributed

based on hash of full path
(or inode #)

Ceph’s Dynamic Partitioning

 Ceph dynamically distributes arbitrary subtrees of
the hierarchy
 Coarse partition preserves locality
 Adapt distribution to keep workload balanced

 Migrate subtrees between MDSs as workload changes
 Adapt distribution to cope with hot spots

 Heavily read directories replicated on multiple MDSs
 Heavily written directories individually hashed across

multiple nodes

Coarse partition

Static Subtree Directory Hashing File HashingDynamic Subtree Partitioning

Fine partition

Metadata Partition

Root

Busy directory hashed across many MDS’s

MDS 0

MDS 1

MDS 2

MDS 3

MDS 4

 Scalability
 Arbitrarily partitioned metadata

 Adaptability
 Cope with workload changes over time, and hot spots

Metadata Scalability

 Up to 128 MDS nodes, and 250,000 metadata ops/second
 I/O rates of potentially many terabytes/second
 Filesystems containing many petabytes (or exabytes?) of data

Metadata Storage

 Consider MDS cluster as an intelligent metadata cache
 MDS cluster must serve both read and update transactions
 MDS cache absorbs some fraction of read requests
 All updates immediately committed to stable storage for safety

 …but most metadata is updated multiple times in a short period!
 Short-term log absorbs multiple updates

 Large
 Flushed very lazily

 Obsolete updates are discarded
 Valid updates are applied to regular on-disk metadata structures

MDS 3MDS 2MDS 1

MDS
Cache

Metadata StorageClients

Short-term
Log or
Journal

Writes

Reads

Writes

Reads

Metadata Storage—
Two Tiers

 Short-term storage in metadata journal
 Updates take advantage of high sequential write bandwidth
 Absorb short-lived or repetitive metadata updates
 Journal used for recovery after MDS failures

 Long-term storage
 On-disk layout optimized for future read access

 Group metadata by directory
 Embed inodes—good locality without large, awkward inode tables

MDS 3MDS 2MDS 1

MDS
Cache

Long-term Storage
(Shared Access)Clients

Short-term
Log or
Journal

Writes

Reads

Writes

Reads

Extending POSIX—
readdir(), stat(), and readirplus()

 Cumulative time for
stat() and readdir() or
readdirplus() while
walking a large
directory hierarchy
 Directory size does not

effect readdir() or
readdirplus() time

 readdirplus() (or relaxed
consistency) eliminates
MDS interaction for
obtaining stat() results

Outline

Maximal separation of data and metadata
 Object-based storage
 Independent metadata management
 CRUSH – data distribution function

Dynamic metadata management
 Adaptive and scalable

 Intelligent disks
 Reliable Autonomic Distributed Object Store

RADOS

EBOFS

RADOS

EBOFS

RADOS—Reliable Autonomic
Distributed Object Store
 Ceph OSDs are intelligent

 Conventional drives only respond to commands
 OSDs communicate and collaborate with their peers

 CRUSH allows us to delegate
 data replication
 failure detection
 failure recovery
 data migration

 OSDs collectively form a single logical object store
 Reliable
 Self-managing (autonomic)
 Distributed

 RADOS manages peer and client interaction
 EBOFS manages local object storage

RADOS –
Cluster map
 OSD cluster map specifies

 What OSDs comprise the cluster
 The CRUSH function mapping each PG to a list of OSDs

 Globally known by all parties (clients, OSDs, MDSs)
 Object locations are then calculated when needed

 Small “monitor” cluster manages master copy
 Makes updates when needed

 Map allow OSDs to act intelligently and
independently

RADOS –
Data Replication
 Each object belongs to a PG
 Each PG maps to a list of OSDs
 Clients interact with the first OSD (“primary”)

 Reads are satisfied by the primary
 Writes are forwarded by the primary to all replicas

 Leverage local OSD interconnect bandwidth
 Simplifies client protocol, replica consistency
 Low incremental cost for replication levels > 2

write

ack

Client OSDs

read

“out”

RADOS—
Failure Detection and Recovery

A
B

C
B

F
C

D
A

F
E

E
D

failure report

new map

“down”

OSDs

Monitor

RADOS –
Scalability
 Failure detection and recovery are distributed

 Centralized monitors used only to update map
 Maps updates are propagated by OSDs themselves

 No monitor broadcast necessary

 Identical “recovery” procedure used to respond to all
map updates
 OSD failure
 Cluster expansion

 OSDs always collaborate to realize the newly
specified data distribution

RADOS –
Data Safety
 Two reasons we write data to a file system

 Synchronization – so others can see it
 Safety – so that data will be durable, survives power failures, etc.

 RADOS separates write acknowledgement into two phases
 ack – write is applied to all replica buffer cache(s)
 safe – all replicas have committed the write to disk

write

ack

safe

Client OSDsMDS

EBOFS—
Low-level object storage
 Extent and B-tree-based Object File System
 Non-standard interface and semantics

 Asynchronous notification of commits to disk
 Atomic compound data+metadata updates

 Extensive use of copy-on-write
 Revert to consistent state after failure

 User-space implementation
 We define our own interface—not limited by ill-

suited kernel file system interface
 Avoid Linux VFS, page cache—designed

under different usage assumptions

RADOS

EBOFS

OSD Performance—
EBOFS vs ext3, ReiserFSv3, XFS

 EBOFS writes saturate disk for request sizes over 32k

 Reads perform significantly better for large write sizes

Conclusions
 Decoupled metadata improves scalability

 Eliminating allocation lists makes metadata simple
 MDS stays out of I/O path

 Intelligent OSDs
 Manage replication, failure detection, and recovery

 CRUSH distribution function makes it possible
 Global knowledge of complete data distribution
 Data locations calculated when needed

 Dynamic metadata management
 Preserve locality, improve performance
 Adapt to varying workloads, hot spots
 Scale

 High-performance and reliability with excellent scalability!

Ongoing and Future Work
 Completion of prototype

 MDS failure recovery
 Scalable security architecture [Leung, StorageSS ’06]

 Quality of service
 Time travel (snapshots)
 RADOS improvements

 Dynamic replication of objects based on workload
 Reliability mechanisms: scrubbing, etc.

Thanks!
http://ceph.sourceforge.net/

Support from
Lawrence Livermore, Los Alamos, and Sandia

National Laboratories

