
Peta-scale Data Storage
Research at UCSC

Ethan L. Miller
Carlos Maltzahn

Qin Xin
RJ Honicky

Joel Wu

Scott A. Brandt
Darrell D. E. Long
Sage Weil
Feng Wang
Andrew Leung

University of California, Santa Cruz
Sponsored by LANL, Sandia, LLNL

Peta-scale Data Storage
Challenges
 Massive scale of everything

 Huge files, directories, data
transfers, etc.

 Managing the data
 Coordinating the activity of

thousands of disks
 Managing the metadata

 Unified namespace
 Workload

 Scientific and general purpose
workloads

 Dynamic capacity
 Must be able to grow (or

shrink) dynamically

 Reliability
 Thousands of hard drives ⇒

frequent failures
 Security

 Authentication, encryption, etc.
 Performance

 Hot spot avoidance
 Many possible bottlenecks

 Quality of Service
 Guaranteed performance with

mixed workloads
 Usability

 Finding anything among all of
that information

Ceph
Usage
 POSIX-like interface

 Standard file/directory
semantics

 High-performance direct
access from 100,000+ clients,
to
 Different directories, same

directory, same file
 Mid-performance local access

by visualization workstations
w/QoS

 Wide-area general-purpose
access

Performance
 20 PB storage system

 1–10,000 hard drives
 1 TB/sec aggregate

throughput
 1,000–10,000 hard drives

pumping out data as fast as
they can

 Billions of files
 Bytes to terabytes
 1–100,000+ files/directory

 Very low-latency metadata

Ceph Architecture
Cluster of Metadata
Servers (1–10)

Clients
(10,000+)

Object-
based
Storage
Devices
(1–10,000)

Metadata Cluster Management
1. Lazy Hybrid
2. Dynamic Subtree Partitioning

Client SW
1. Interface
2. Cache Mgmt
3. Workload

characterization

Object Storage
1. OBFS
2. EBOFS

Storage System
1. Data Distribution
2. Reliability
3. Quality of Service
4. Security
5. In-flight data management
6. Distributed Information Retrieval
…

Ceph Research

Today: Ceph Overview (Sage)
 Client operation

 System overview
 Ceph components

 CRUSH pseudo-random data placement
 DSP distributed metadata management
 RADOS reliable, distributed object storage
 EBOFS high-performance object storage

 Evaluation
 Prototype performance numbers

Ceph: A Scalable,
High-Performance

Distributed File System

Sage Weil
University of California, Santa Cruz

Ceph—
Key Design Principles

Maximal separation of data and metadata
 Object-based storage
 Independent metadata management
 CRUSH – data distribution function

Dynamic metadata management
 Adaptive and scalable

 Intelligent disks
 Reliable Autonomic Distributed Object Store

Outline

Maximal separation of data and metadata
 Object-based storage
 Independent metadata management
 CRUSH – data distribution function

Dynamic metadata management
 Adaptive and scalable

 Intelligent disks
 Reliable Autonomic Distributed Object Store

Object Interface

File System

Storage component

ApplicationsApplications

Logical Block Interface

File System

Traditional Storage Object-based Storage

Hard Drive Object-based Storage Device (OSD)

Object-based Storage
Paradigm

Client

Metadata Servers (MDS)

Ceph—
Decoupled Data and Metadata

File System

Applications

Storage component

Object-based Storage Device (OSD)

Metadata Manager

Object Storage Devices (OSDs)

Client

Ceph—
A Simple Example
• fd=open(“/foo/bar”,O_RDONLY);

1. Client: requests open from MDS
2. MDS: reads directory “/foo” from OSDs
3. MDS: issues “capability” for “/foo/bar”

• read(fd,buf,10000);
4. Client: calculates name(s) and location(s)

of data object(s)
5. Client: reads data from OSDs

• close(fd);
6. Client: relinquishes capability to MDS

• MDS stays out of I/O path
• Client doesn’t need to look up the location

of file data

MDS Cluster

Object Storage Cluster

Client

CRUSH—
Simplifying Metadata
 Conventionally

 Directory contents (filenames)
 File inodes

 Ownership, permissions
 File size
 Block list

 CRUSH
 Small “map” completely specifies data distribution
 Eliminates allocation lists
 Inodes “collapse” back into small, almost fixed-sized structures

 Embed inodes into directories that contain them
 No more large, cumbersome inode tables

CRUSH—
Data distribution with a function
 Files striped across many objects

 Striping strategy specified in inode
 object_id = <inode_num, object_num>

 Objects mapped to placement groups (PGs)
 pg_id = hash(object_id) & mask

 CRUSH maps PGs to OSDs
 Pseudo-random distribution
 Statistically uniform
 Replicated on multiple OSDs

 CRUSH is…
 A function—calculable everywhere (no

explicit tables)
 Stable—adding/removing OSDs moves

few objects
 Reliable—replicas span failure domains

 ...everything you’d normally want to do
using conventional allocation tables!

…

…

… … …
…

OSDs
(grouped by
 failure domain)

File

Objects

PGs

OSD Cluster Scaling—
CRUSH vs careful striping

 Higher placement group count reduces statistical variance,
divergence from optimal (write throughput shown)

Outline

Maximal separation of data and metadata
 Object-based storage
 Independent metadata management
 CRUSH – data distribution function

Dynamic metadata management
 Adaptive and scalable

 Intelligent disks
 Reliable Autonomic Distributed Object Store

Metadata—
Traditional Partitioning

 Coarse distribution (static subtree partitioning)
 hierarchical partition preserves locality
 high management overhead: distribution becomes imbalanced as

file system, workload change
 Finer distribution (hash-based partitioning)

 probabilistically less vulnerable to “hot spots,” workload change
 destroys locality (ignores underlying hierarchical structure)

Directory Hashing
 Hash on directory portion

of path only

Coarse partition Fine partition

Static Subtree Partitioning
 Portions of file hierarchy

are statically assigned
to MDS nodes
 (NFS, AFS, etc.)

File Hashing
 Metadata distributed

based on hash of full path
(or inode #)

Ceph’s Dynamic Partitioning

 Ceph dynamically distributes arbitrary subtrees of
the hierarchy
 Coarse partition preserves locality
 Adapt distribution to keep workload balanced

 Migrate subtrees between MDSs as workload changes
 Adapt distribution to cope with hot spots

 Heavily read directories replicated on multiple MDSs
 Heavily written directories individually hashed across

multiple nodes

Coarse partition

Static Subtree Directory Hashing File HashingDynamic Subtree Partitioning

Fine partition

Metadata Partition

Root

Busy directory hashed across many MDS’s

MDS 0

MDS 1

MDS 2

MDS 3

MDS 4

 Scalability
 Arbitrarily partitioned metadata

 Adaptability
 Cope with workload changes over time, and hot spots

Metadata Scalability

 Up to 128 MDS nodes, and 250,000 metadata ops/second
 I/O rates of potentially many terabytes/second
 Filesystems containing many petabytes (or exabytes?) of data

Metadata Storage

 Consider MDS cluster as an intelligent metadata cache
 MDS cluster must serve both read and update transactions
 MDS cache absorbs some fraction of read requests
 All updates immediately committed to stable storage for safety

 …but most metadata is updated multiple times in a short period!
 Short-term log absorbs multiple updates

 Large
 Flushed very lazily

 Obsolete updates are discarded
 Valid updates are applied to regular on-disk metadata structures

MDS 3MDS 2MDS 1

MDS
Cache

Metadata StorageClients

Short-term
Log or
Journal

Writes

Reads

Writes

Reads

Metadata Storage—
Two Tiers

 Short-term storage in metadata journal
 Updates take advantage of high sequential write bandwidth
 Absorb short-lived or repetitive metadata updates
 Journal used for recovery after MDS failures

 Long-term storage
 On-disk layout optimized for future read access

 Group metadata by directory
 Embed inodes—good locality without large, awkward inode tables

MDS 3MDS 2MDS 1

MDS
Cache

Long-term Storage
(Shared Access)Clients

Short-term
Log or
Journal

Writes

Reads

Writes

Reads

Extending POSIX—
readdir(), stat(), and readirplus()

 Cumulative time for
stat() and readdir() or
readdirplus() while
walking a large
directory hierarchy
 Directory size does not

effect readdir() or
readdirplus() time

 readdirplus() (or relaxed
consistency) eliminates
MDS interaction for
obtaining stat() results

Outline

Maximal separation of data and metadata
 Object-based storage
 Independent metadata management
 CRUSH – data distribution function

Dynamic metadata management
 Adaptive and scalable

 Intelligent disks
 Reliable Autonomic Distributed Object Store

RADOS

EBOFS

RADOS

EBOFS

RADOS—Reliable Autonomic
Distributed Object Store
 Ceph OSDs are intelligent

 Conventional drives only respond to commands
 OSDs communicate and collaborate with their peers

 CRUSH allows us to delegate
 data replication
 failure detection
 failure recovery
 data migration

 OSDs collectively form a single logical object store
 Reliable
 Self-managing (autonomic)
 Distributed

 RADOS manages peer and client interaction
 EBOFS manages local object storage

RADOS –
Cluster map
 OSD cluster map specifies

 What OSDs comprise the cluster
 The CRUSH function mapping each PG to a list of OSDs

 Globally known by all parties (clients, OSDs, MDSs)
 Object locations are then calculated when needed

 Small “monitor” cluster manages master copy
 Makes updates when needed

 Map allow OSDs to act intelligently and
independently

RADOS –
Data Replication
 Each object belongs to a PG
 Each PG maps to a list of OSDs
 Clients interact with the first OSD (“primary”)

 Reads are satisfied by the primary
 Writes are forwarded by the primary to all replicas

 Leverage local OSD interconnect bandwidth
 Simplifies client protocol, replica consistency
 Low incremental cost for replication levels > 2

write

ack

Client OSDs

read

“out”

RADOS—
Failure Detection and Recovery

A
B

C
B

F
C

D
A

F
E

E
D

failure report

new map

“down”

OSDs

Monitor

RADOS –
Scalability
 Failure detection and recovery are distributed

 Centralized monitors used only to update map
 Maps updates are propagated by OSDs themselves

 No monitor broadcast necessary

 Identical “recovery” procedure used to respond to all
map updates
 OSD failure
 Cluster expansion

 OSDs always collaborate to realize the newly
specified data distribution

RADOS –
Data Safety
 Two reasons we write data to a file system

 Synchronization – so others can see it
 Safety – so that data will be durable, survives power failures, etc.

 RADOS separates write acknowledgement into two phases
 ack – write is applied to all replica buffer cache(s)
 safe – all replicas have committed the write to disk

write

ack

safe

Client OSDsMDS

EBOFS—
Low-level object storage
 Extent and B-tree-based Object File System
 Non-standard interface and semantics

 Asynchronous notification of commits to disk
 Atomic compound data+metadata updates

 Extensive use of copy-on-write
 Revert to consistent state after failure

 User-space implementation
 We define our own interface—not limited by ill-

suited kernel file system interface
 Avoid Linux VFS, page cache—designed

under different usage assumptions

RADOS

EBOFS

OSD Performance—
EBOFS vs ext3, ReiserFSv3, XFS

 EBOFS writes saturate disk for request sizes over 32k

 Reads perform significantly better for large write sizes

Conclusions
 Decoupled metadata improves scalability

 Eliminating allocation lists makes metadata simple
 MDS stays out of I/O path

 Intelligent OSDs
 Manage replication, failure detection, and recovery

 CRUSH distribution function makes it possible
 Global knowledge of complete data distribution
 Data locations calculated when needed

 Dynamic metadata management
 Preserve locality, improve performance
 Adapt to varying workloads, hot spots
 Scale

 High-performance and reliability with excellent scalability!

Ongoing and Future Work
 Completion of prototype

 MDS failure recovery
 Scalable security architecture [Leung, StorageSS ’06]

 Quality of service
 Time travel (snapshots)
 RADOS improvements

 Dynamic replication of objects based on workload
 Reliability mechanisms: scrubbing, etc.

Thanks!
http://ceph.sourceforge.net/

Support from
Lawrence Livermore, Los Alamos, and Sandia

National Laboratories

