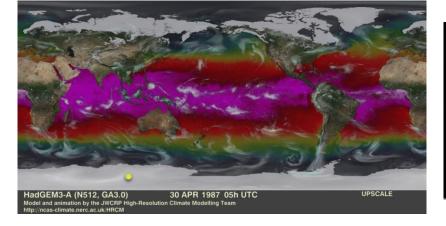
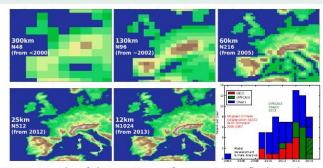
On the challenges of deploying an unusual high performance hybrid object/file parallel storage system in JASMIN

Cristina del Cano Novales¹, Jonathan Churchill¹, Athanasios Kanaris¹, Robert Döbbelin², Felix Hupfeld², Aleksander Trofimowicz²

1 Scientific Computing Department, Science and Technology Facilities Council, RAL, Didcot OX11 0QX, UK 2 Quobyte GmbH, Berlin, AG Charlottenburg HRB 149012 B, Germany

Environmental Data Analysis

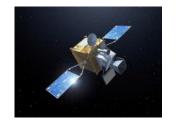



- Centre for Environment and Hydrology
- Trends for 1000's of species
- Analysis unprecedented in complexity and scope within the UK.

- **COMET-CPOM UoLeeds**
- Near real time monitoring of all active earthquake and volcanos.
- Relies on full ESA Sentinel data, Managed and unmanaged tenancies, LOTUS batch

JASMIN: the missing piece

Growing Need - High Resolution Climate Programme!



Just one example, of the many axes of growing scientific demand in simulations and observation:

- From 7K to 3.1M points (0.05 MB to 25MB) for a single timestep of a single level of a global field.
- support the data analysis (which needs to include similarly high-resolution observations).

► Multi-year data management campaigns <

MetOffice supercomputer

ARCHER supercomputer (EPSRC/NERC)

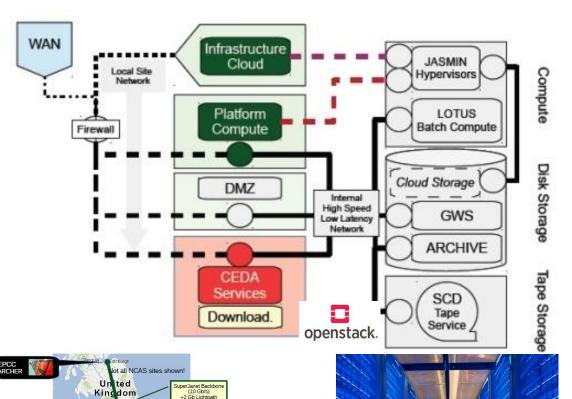
The UK JASMIN Environmental Commons: Now and into the Future Bryan Lawrence - RAL, 27th June 2017

The Organised Data Deluge

CMIP6 data volumes and data rates not yet known, but the European contribution to HiresMIP alone is expected to exceed 2 PB.

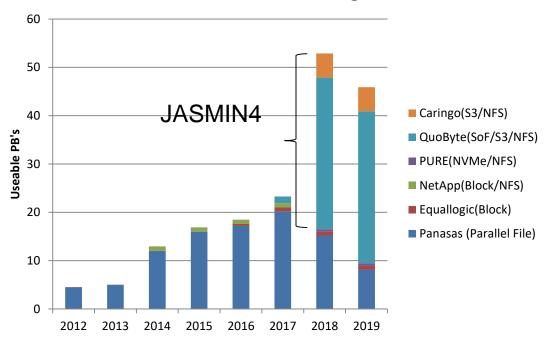
Sentinel 1A (2014), 1B (2016) Sentinel 2A (2015) 2B (2017?) Sentinel 3A (2016) 3B (2018?)

Data rate: o(6) PB/year



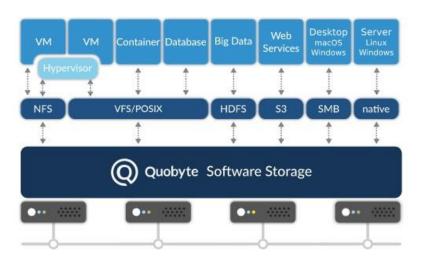
Blending PB's of data, 1000's of Cloud VM's, Batch Computing & WAN Data transfer

1 Gb Lightpath


1 Gb Lightpath

- ✓ 24.5 PB Panasas
 - ~ 250GByte/s
- √ 44 PB Quobyte SDS
 - ~ 220GBytes/s
- ✓ 5PB Caringo Object Store
- √ 80PB Tape
- ✓ Batch HPC 6-10k cores
- ✓ Optical Private WAN + Science DMZ
- ✓ "Managed" VMware Cloud
- ✓ OpenStack "Community" Cloud
- ✓ Pure FlashBlade scratch
- ✓ Non-blocking ethernet 12-20Tbit/sec

JASMIN4 Disc Storage


JASMIN Disc Storage

- No boundaries on data growth (or network topology)
- S3 interface to file and object system. RW Both sides.
- Performance similar to Panasas PFS
- Online upgrades. Redundant networking.
- No client "call back" port.
 - Previous root /network and UMC restrictions.

Quobyte SDS

Parallel File System

HPC

Storage for containers

Kubernetes, Mesos, Docker

Hadoop File System

Big Data

Block storage for VMs

OpenStack,

hyperconverged

Distributed File System

Video, CGI, EDA

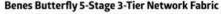
Scale-out NAS

Enterprise applications

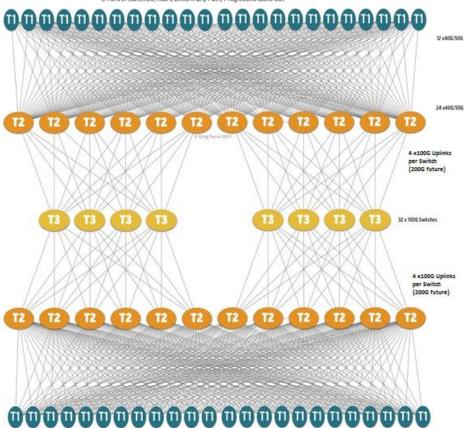
Archival storage

HPC, backup, e-Science

Object storage

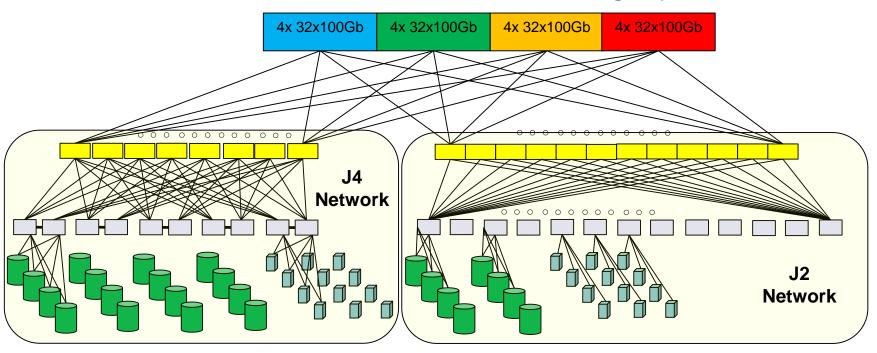

Service provider-grade S3

storage


- 45PB raw, ~30PB usable (EC 8+3)
- Hardware split 50:50 Dell / Supermicro
- 47x R730xd's + MD3060 arrays (1 / server pair) 40Gb NICs
- 40x Supermicro 4U "Top loader" servers 50Gb NICs
- Target > 50MB/sec/HDD. Ideally 70-100MB/sec/HDD

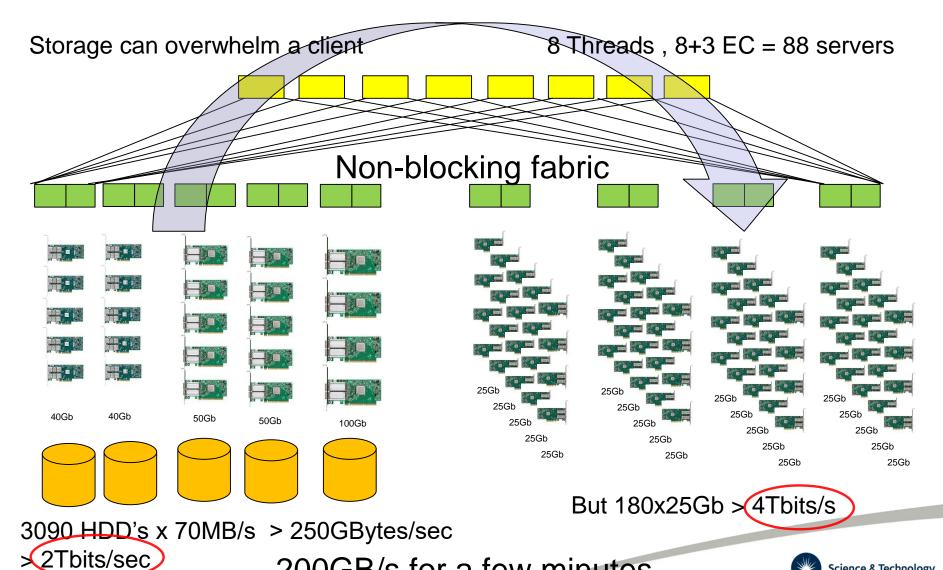
"5 Tier" CLOS Network

3 Tiers of Switches, Max 5 Links in any Path, Progressive Build Out


- Traditional for BGP throughout
- JASMIN2/3 all OSPF
- OSPF Lower complexity cf BGP
- Keep OSPF Leaf-Spine for JASMIN4
 - Ease of use at the edges.
- BGP only in Spine to SuperSpine
 - For the core network specialists
 - But stops EVPN leaf use for now

Connecting JASMIN2 to JASMIN4

Superspine: 16 Spines (32x 100Gb)


➤ 4 Cluster/groups of 4 routers

- 8 Spines (32x 100Gb)
 - 4x 100Gb to Super-Spine
- 17 Leaf pairs (2 of 16x 100Gb)
 - 8x 100Gb uplinks. 1 per spine
- Storage/Compute
 - 1x 25/40/50Gb to 'A' and 'B' lead

- 12 Spines (36x 40Gb)
 - 4x 40Gb to Super-Spine
- 30 Leafs (48x10Gb+12x40Gb)
 - 12x 40Gb uplinks. 1 per spine
- Storage/Compute
 - 2x 10Gb to local leaf

Congestion in a "non-blocking" network

~200GB/s for a few minutes

Thank you!

