PDSW-DISCS 2018: 3RD JOINT INTERNATIONAL WORKSHOP ON PARALLEL DATA STORAGE & DATA INTENSIVE SCALABLE COMPUTING SYSTEMS

PARALLEL ALGORITHMS FOR MINING LARGE-SCALE TIME-VARYING (DYNAMIC) GRAPHS

Big Data and Scalable Computing Research Lab SHAIKH ARIFUZZAMAN

NAW SAFRIN SATTAR

MD ABDUL MOTALEB FAYSAL

TEMPORAL GRAPH

- powerful representation of various social, biological and technological dynamic systems
 - Social interactions and human activities,
 - appearance and disappearance of links in the Web,
 - patterns of interactions among genes
 - patterns of interactions in functional brain networks
- Complex system

APPLICATIONS

- Diffusion and propagation in complex and social networks
 - spread of viruses through a community
- Understanding communication networks
 - false news propagation
- Improving transportation systems
 - route-planning algorithms depending on the traffic with varied time
- Neuron (brain) network analysis
 - Locating key neurons in cortical networks

MOTIVATION & CHALLENGES

- defining and computing various temporal network metrics
 - -classic studies' analysis of the topological properties of static graphs
- emergence of network big data
 - -massive networks often do not fit in the main memory of a single machine
 - -prohibitively large runtime for existing sequential methods

OUR APPROACH

- Designing scalable algorithms
- Metrics
 - -Computing path
 - -Centrality
 - -Communities

OUR SCALABLE ALGORITHMS FOR STATIC GRAPH

DISTRIBUTED-MEMORY
PARALLEL ALGORITHMS FOR
COUNTING AND LISTING
TRIANGLES IN BIG GRAPHS

DPLAL (DISTRIBUTED PARALLEL LOUVAIN ALGORITHM WITH LOAD-BALANCING) TO DETECT COMMUNITIES

Big Data and Scalable Computing Research Lab

Speedup factors of our multithreaded shortest path algorithm

SPEEDUP VS NO OF THREADS

FUTURE WORKS

Parallelize existing sequential temporal networks mining and computation of network metrics

- Efficient load balancing
- -Communication schemes
- -Data reduction (e.g., graph sparsification and approximation)
- -Efficient formalization of temporal metrics

THANK YOU