
Is End-to-End Integrity Verification Really End-
to-End?

Ahmed Alhussen, Batyr Charyyev, and Engin Arslan



What’s End-to-End Integrity Verification

 Data corruption may occur during transfers
– Faulty equipment, transient errors etc.

 Existing integrity check mechanisms are weak
– TCP checksum fails to once in every 16 million to 10 

billion packets
 End-to-end integrity verification offers strong fault-

tolerance guarantee
– Secure hash algorithms SHA1, SHA-254
– Captures errors that could happen anywhere during 

transfers; network, server, and disk (?)



How End-to-End Integrity Verification 
Works?

Sender Receiver
Read the file and send Receive the file and save



How End-to-End Integrity Verification 
Works?

Sender Receiver
Read the file and send Receive the file and save

Read the file again and compute 
checksum

Read file back from storage and 
compute checksum



How End-to-End Integrity Verification 
Works?

Sender Receiver
Read the file and send Receive the file and save

Read the file again and compute 
checksum

Read file back from storage and 
compute checksum

Accept receiver’s checksum Send checksum



How End-to-End Integrity Verification 
Works?

Sender Receiver
Read the file and send Receive the file and save

Read the file again and compute 
checksum

Read file back from storage and 
compute checksum

Accept receiver’s checksum Send checksum

If checksums match Done



How End-to-End Integrity Verification 
Works?

Sender Receiver
Read the file and send Receive the file and save

Read the file again and compute 
checksum

Read file back from storage and 
compute checksum

Accept receiver’s checksum Send checksum

If checksums match Done

Else Transfer again



Are Disk Write Errors Captured?

Potential weakness to detect disk write errors!

100% cache hit!



Testing Integrity Verification Against Faults

 Four files 1-5 GB and one file 24 GB. Memory size is 20 GB
 One fault injected for each file during disk write
 Traditional approach failed to catch 4 out of 5 faults!



Proposed Solution

 Secure Integrity Verification Algorithm (SIVA)
– Delay checksum computation to let kernel remove files 

from cache
– Ensures that files are read from disk



Proposed Solution

 Secure Integrity Verification Algorithm (SIVA)
– Delay checksum computation to let kernel remove files 

from cache
– Ensures that files are read from disk



Future Work

 SIVA leads to ~4% cache hits. Can we reduce it even 
lower to avoid missing any disk corruptions?

 Delaying checksum incurs execution time overhead in 
return of stronger fault tolerance. How to optimize 
execution time without sacrificing accuracy?

 Explore ways to detect file cache removal to start 
checksum earlier



Questions?


	Is End-to-End Integrity Verification Really End-to-End?
	What’s End-to-End Integrity Verification
	How End-to-End Integrity Verification Works?
	How End-to-End Integrity Verification Works?
	How End-to-End Integrity Verification Works?
	How End-to-End Integrity Verification Works?
	How End-to-End Integrity Verification Works?
	Are Disk Write Errors Captured?
	Testing Integrity Verification Against Faults
	Proposed Solution
	Proposed Solution
	Future Work
	Slide Number 13

