Efficient Unstructured Data Compression
for Block Storage Systems

Hiroki Ohtsuji
Fujitsu Laboratories Ltd.
Kawasaki, Japan

I. INTRODUCTION

Data compression is a key technology to reduce the amount of
data in large-scale storage systems. HPC applications mainly use
well-structured data formats; however, there are still unstructured data
sets in storage systems. Well-structured data can be compressed in
a sophisticated manner, which can avoid degrading the I/O perfor-
mance. The rest unstructured data sets will be compressed by file
systems or underlying block storage systems. From a view point of
storage systems, it is difficult to obtain the structural information of
written data blocks. If the block storage system compresses them
individually, there is a limitation in terms of the data compression
ratio. Using larger data chunk size is an option to improve the
compression ratio, at the same time, it also brings the I/O performance
degradation problem, which is caused by the read amplification. This
paper discuss a dynamic chunking method to optimize the size of
compressed blocks to avoid I/O performance degradation.

II. I/0 PERFORMANCE DEGRADATION: READ AMPLIFICATION

The read amplification problem occurs when the application re-
quires only a fraction of compressed data blocks. Typically, this
problem is caused by random and stride access patterns. Fig. 1
describes the mechanism of the read amplification problem. The
compression algorithm uses the reference pointers to previously
appeared chunks to reduce the data length. Therefore, the storage
system have to read the entire compress data block and decompress
them to access a single data block. This behavior increases the amount
of read access and degrades the both latency and bandwidth. In
order to avoid this performance degradation, we have to split a group
of consecutive written data blocks which are expected to have less
relevance.

III. DESIGN AND IMPLEMENTATION

Fig. 2 describes the implementation of the target system. We
modified the structure of the write cache page table to implement
the dynamic chunking mechanism. The additional column is “write
time stamp”, which stores the time stamps of the write I/O operations.
The system regards the write operations as independent if there is a
time gap between two /O operations. Independent written blocks
will be individually compressed into compressed blocks. In addition,

8KB | 8KB | 8KB  8KB | 8KB m Original Data

! T

Compress |/
—s
|

Decompress| \

!
Decompressed

8KB  8KB | 8KB B8KB  8KB \m po

Compressed Data

Fig. 1. Read amplification: Reading an entire compressed block is required
to decompress only a single block.

Yoshiyasu Doi
Fujitsu Laboratories Ltd.
Kawasaki, Japan

there is a mechanism to monitor read accesses in order to adjust the
compression chnunk size (not described in the figure).

Write cache page table
Dedup Page | Block | Reference | Physical
D (Hash) | Count address
Write cache edue)
0 0x2345 2 Oxabd 0 1
Compression 1 1
2
E ;E ; THD 5 a

Fig. 2. A storage system and the write cache page structure for the dynamic
chunking mechanism.

10
03456 1 Oxbcde 0 100
0x4567 1 Oxbcde 1 101 1

IV. EVALUATION

Fig. 3 depicts the preliminary evaluation result of the compression
ratio with LZ4 [1] algorithm. If we use 64 KB compressed chunk
size instead of 4 KB, we can improve the compression ratio by 17
percentage points. The read amplification is expected to be eliminated
in the case of Fig. 4 because the method can split write data blocks
into appropriate chunks.

Fig. 3. Compression ratio: X-axis is the size of compressed blocks. Y-axis
is the compression ratio.

Fig. 4. An example of write trace log: Contiguous (left) and non-contiguous
(right)

V. CONCLUSION AND FUTURE WORK

This paper described the dynamic chunking method for the data
compression mechanism in block storage systems. The method can
improve the compression ratio while preventing the I/O performance
degradation incurred by unnecessary read operations. Future work
is evaluating the method with real workload with the complete
implementation of the system.

REFERENCES

[1] Yann Collet. Lz4: Extremely fast compression algorithm, 2013.



