
Data Pallets For Traceable Data
Jay Lofstead, Joshua Baker, Andrew J. Younge

Sandia National Laboratories

Abstract—The ability to trace any given output of scientific
HPC workloads back to the originating application and input
deck is a “holy grail” for reproducible computational science.
Provenance and workflow systems have tried for decades to
achieve this goal, but have produced fragile and/or partial
solutions limiting adoption.

The widespread adoption of container technology, along with
a few modifications collectively we call Data Pallets, can achieve
this traceability invisibly to the application and end user and
allow immediate identification of production artifacts through
simple data inspection.

I. INTRODUCTION

The application of the scientific method mandates the re-
production of any scholarly data to provide an expectation of
explainability for any results, insights, and knowledge gener-
ated. The peer review process evaluates these artifacts in part
to validate the claims and if a reasonable process was followed.
Historically, achieving this standard with computational results
has proven difficult. Bespoke hardware and software stacks are
rarely available or replicable for others. As a first significant
step towards solving this gap between practice and a standard
scientific process, we present Data Pallets.

The adoption of container technology is largely due to the
low overhead for isolated program execution on a platform
and the ease for redeploying instances of said programs.
However, the key container design aspects that matter are
the unique identification hash code and the encapsulation.
Through incorporating system support to ensure generated data
is encapsulated into a new container we call a data pallet, and
tagging it with the IDs for all mounted containers that were
running when it was created, we can automatically generate
provenance information that is inseparable from the data itself,
while not perturbing the data contents or accessibility.

II. DESIGN

The basic design extends the container system to automat-
ically generate a new, writeable container each time the code
writes to storage. As an initial proof of concept, we incorporate
FUSE [1] to intercept basic filesystem calls, such as mkdir,
and mount a newly created container (data pallet) at that
location. Each data pallet has an associated hash which is
accounted for and mantained as metadata within the container
image mechanism.

III. IMPLEMENTATION

To simplify testing this idea, the Singularity [2] writeable
container technology is leveraged. While the base-line Sin-
gularity writeable container must be created prior to starting
Singularity to run the application, we have modified the

environment to incorporate FUSE to intercept the mkdir
command and mount the container into the Linux namespace
at runtime. This accomplishes creating the container that will
hold all of the generated output.

The provenance information relies on the new Singularity
image format’s ability to house multiple partitions. We use
the base partition to store the data and add a second one,
containing a JSON file of container IDs for the environment
in use when this container was created.

IV. INITIAL RESULTS

The initial results examine the space overheads of this ap-
proach. The basic container image imposes a 700 KB overhead
using the ext3 format, as is required for the writeable format.
An additional 1.1 MB is taken for the attribute partition. While
this overhead is not minimal, compared to today’s data sizes
of 10s of GB per node, the resulting overhead is < 0.1%.

We have also demonstrated using the Sandia Analysis
Workbench workflow tool to deploy such a set of containers
generating the desired output into a data pallet.

V. IMPLICATIONS AND FUTURE WORK

There are some underlying base assumptions for this ap-
proach. First, we must maintain the containers for all applica-
tions for which we want to trace back data. Second, and more
importantly, all input and configuration files for a simulation
run should each be placed in their own container allowing
unique identification. While this is not free, we believe that
a few GBs stored with PBs of generated data is a negligible
burden given the resulting benefits.

There are numerous challenges and issues that are still to
be addressed. For example, one file per process workloads,
such as Sandia’s Sierra codes, the annotations (artifact IDs)
must be maintained while merging and splitting data. There
are a whole host of additional data management issues for the
container proliferation as well. But as a first step, this offers
a true “scientific” environment.

ACKNOWLEDGEMENTS
Sandia National Laboratories is a multimission laboratory managed and

operated by National Technology and Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This work is funded through the LDRD program
and ASC CSSE.

REFERENCES

[1] M. Szeredi, “Fuse: Filesystem in userspace. 2005,” URL http://fuse.
sourceforge. net, 2005.

[2] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PloS one, vol. 12, no. 5.


