

Towards a Task-Based I/O System

Anthony Kougkas

Department of Computer Science

Illinois Institute of Technology

Chicago. USA

akougkas@hawk.iit.edu

Hariharan Devarajan

Department of Computer Science

Illinois Institute of Technology

Chicago. USA

hdevarajan@hawk.iit.edu

Xian-He Sun

Department of Computer Science

Illinois Institute of Technology

Chicago. USA

sun@iit.edu

I. ABSTRACT

In the era of data-intensive computing, with ever growing
dataset sizes and an exploding core count, storage systems are
a critical component in achieving computational efficiency.
Large scale applications, in both scientific and the BigData
communities, demonstrate unique I/O requirements leading to
a variety of storage solutions which are often incompatible to
one another. Each new architecture has been accompanied by
new software for extracting performance on the target
hardware. Further, each new storage device added to the
system architecture of large-scale computing machines has led
to new paradigms. Parallel file systems (PFS) are the de-facto
storage solution in most HPC machines. As the name implies, a
PFS deals with data in the form of files. PFSs obey certain
standards, such as POSIX, to offer portable guarantees and
strong data consistency. PFS manipulate data in a certain
sequence of operations known as streamlined I/O. In cloud
environments the storage scene is different. Innovation is
driven by the wide popularity of computing frameworks. As a
result, the cloud community has developed a wide variety of
storage solutions tailored to serve specific purposes. To
navigate this vast and diverse set of contradictory I/O
requirements, the software landscape is filled with custom,
highly specialized storage solutions varying from high-level
I/O libraries to custom data formats, interfaces, and ultimately
storage systems. Modern storage systems must efficiently
support a diverse and conflicting set of features.

In this study, we aim to explore a novel way to view the I/O

needs of modern applications. We propose TABIOS, a new,

distributed, scalable, and adaptive Task-based I/O System. In

TABIOS, all I/O requests are transformed to a configurable

unit of I/O, called DataTask, which is a tuple of operation and

a pointer to user data. Datatasks are pushed from the

application to a distributed queue which is served by a

scheduler. TABIOS workers (i.e., storage servers) execute

datatasks independently. The entire TABIOS architecture is

decoupled. TABIOS' datatasks offer great flexibility to both

the applications, which simply express their I/O workload in

the form of an I/O task, and to the storage infrastructure that

can now be malleable (i.e., elastic storage resources). Using

datatasks, Most importantly, TABIOS can support a wide

variety of diverse conflicting I/O workloads, from scientific

computing to BigData analytics, on a single platform. We

envision TABIOS to be agile, capable of power-capped

computing, and reactive to the environment offering storage

QoS guarantees and tunable concurrency control.

Figure 1: TABIOS High-level Architecture

TABIOS demonstrates:

1. the effectiveness of storage malleability, where

resources can grow/shrink based on the workload.

2. how to effectively use asynchronous I/O with the

mixed media and various configurable storage options.

3. how to support resource heterogeneity based on the

targeted hardware configuration supporting a variety of

storage resources under the same platform.

4. the effectiveness of data provisioning, enabling in-

situ data analytics and process-to-process data migration.

5. how to support a diverse set of conflicting I/O

workloads, from HPC to BigData analytics, on a single

platform, through effective storage consolidation.

The following figure shows the read and write datatask
operation decomposition expressed as time percentage and
divided by each TABIOS component. All results are the
average time of 10K datatasks. As expected the most time is
spent on the workers performing the disk operations.

Figure 2: Read/Write Operations Decomposition

mailto:akougkas@hawk.iit.edu
mailto:hdevarajan@hawk.iit.edu
mailto:sun@iit.edu

