
Cambridge Data Accelerator

Alasdair King {ajk203@cam.ac.uk}, Dr Paul Calleja {pjc82@cam.ac.uk}
University of Cambridge, Research Computing Services

Abstract— An overview of the Cambridge Data Accelerator, a
open-source project providing on-demand file-systems, building
on existing work in the Slurm workload scheduler, and is built
using Dell EMC and Intel hardware. The hardware has been
in testing since June 2018, and has allowed the team at the
University of Cambridge to detail some of the problems and
solutions in building complex flash storage. The system has been
tested and produces the 500 GiB/s reads, and close to 300 GiB/s
writes. Continuing work at the University of Cambridge on
stabilising network faults that limit performance and file-system
integrity; as well as patches to the prospective file-systems tested
- Lustre and BeeGFS currently the main targets. Systems in the
UK and in Australia have made use of this work as the bases
for there own implementations. This software, that will be used
in production at Cambridge, and its results will be made open
to all. Follow up work will include the impact of this system on
the I/O performance of UK science applications. This work has
also helped in the use of SSDs in the Square Kilometer Array
compute components.

I. INTRODUCTION

With the commercialisation of burst buffer systems by
Cray Inc. (DataWarp) and other storage providers, there is
a requirement for a flexible, open solution for all. While
this solution facilitates a similar function to these proprietary
systems, this work is not a direct comparison and does
not include, or leverage, any of the former’s technology;
with the exception of the Slurm Cray Burst Buffer plugin
which is open-source under GPL2. The Data Accelerator
project provides ephemeral per job file-systems. This is
accomplished by a special program that orchestrates the
resources. This program is controlled by the Slurm plugin
and builds the chosen parallel file system over the nodes
with NVMe devices. Files can then be stage in from any
other source and copied into the device. However this is
not the only way to make use of the system, as the system
supports multiple workflows than a simple check-pointing
and restarting.

Burst Buffers were developed by Los Alamos National
Lab (LANL) and the San Diego Supercomputing Center
(SDSC) for check-pointing and restarting in their large
simulations. For these applications, one is check pointing
multiple Terabytes of state to a parallel file system. At
LANL the Parallel Log File System (PLFS) was used as
the underlying file system for their implementation on fast
disk or commodity SSD disks mounted on the nodes, or
directly connected to the network. This allowed them to
greatly enhance the time to solution by reducing the amount
of time a simulation spent in I/O. To provide this level of
improvement using standard scratch file systems such as
Lustre, massive arrays of disks are used and can be x10

more in procurement costs than a SSD based solution for a
similar performance.

II. SEMANTICS AND WORK FLOWS FOR BURST BUFFERS

A. Semantics

Using the example of LANL’s Burst Buffer, the system
is designed to provide a destination for user code to place
checkpoints of memory state in a temporary caches that is
several times larger than the memory in use by the program.
In the case of petascale supercomputing, this can be several
Terabytes of required space, which necessitates improved
performance that the existing pool of parallel storage is often
unable to provide. As this project builds on this work and
extends the functionality, the term ’Burst Buffer’ no longer
seems adequate to describe the system. The term Burst Buffer
is renamed Data Accelerator or DAC for short.

B. DAC Workflows

Glen Lockwood from NERSC at Berkeley National Lab,
describes in a blog post the taxonomy for Data Accelerators
based on his experiences with DataWarp on Corri. [1]

• Stage In and Out: This is the primary use case for
users of the DAC. Data will be copied from a second
source to the DAC. This could be a home directory or
a parallel file system.

• Transparent Caching: An advanced feature allowing
the fast tier to cache files and transparently drain back
to the main parallel file system

• Checkpoint Restart: A single large namespace to place
checkpoints from programs.

• Journaling: Programs can use the fast tier as a place
to dump deltas of program output that can be replayed
at a later date, reducing the amount of time a compute
nodes spends in I/O.

• Swap: Mounted as NVMe over Fabric the device can
be used to provide a memory extension for non deter-
ministic memory requirements.

This project focuses on, stage in/out, checkpoint and swap
workflows with other possible usage to be investigated.
Staging in and out as well as checkpointing are seen as the
most common use cases for applications that wish to make
use of the Data Accelerators improved performance. Should
the Data Accelerator make the Swap workflow achievable,
this would allow shared memory programs to be used to
grater affect at Cambridge.



Fig. 1. Network Attached Data Accelerator

III. ARCHITECTURE

Figure 1 shows a network attached architecture for the
DAC. Other options include installing SSDs on IO forward-
ing nodes or inside the node, as an SSD or NV-DIMM. The
system is built using Dell EMC R740XD. Each node has
12 NVMe’s, 6 per NUMA domain dew to the number of
PCI lanes available from the CPU. Each node has two fabric
links to ensure the majority of the perforce is extracted over
the network. Each node take a 2U space in each rack of the
super computing resource of Cambridge. Each node is in
1:1 relation with its up links to the fat tree used as topology.
This was dew to issues found early on with multiple Data
Accelerator nodes being located on the same switch. The
layout of file-system services varies between wish file-system
is in used. It can be simplified to any NVMe being a member
of N metadata or storage service targets per name space.

IV. SLURM INTEGRATION

The project makes use of the Cray Burst Buffer plugin
open sourced as part of the Slurm workload scheduler. Our
solution is designed in such a way that we can make use
of it without modifying Slurm source code. Figure 2 shows
the progression of a job when it requests a DAC file-system.
Jobs will - if requested - stage in data and run the job when
the resources has been allocated and data copied. The job
then runs as normal but with the added traceable resource of
an on-demand file system. When job is completed the data
will then be staged back to a second file system, which can
be storage location that can be mounted or accessed by a
DAC node.

Figure 3 shows an example form the Slurm documentation
of a users job submission script. In this example, the job is
using the DAC to stage in and out data. The user specifies
the location of their files. The parallel copy tool, supplied
as part of the project, migrates the files from a parallel file
system or home directory to the DAC.

V. CONCLUSION

This project provides the software platform required to
manage and stage data between two tiers of storage through
a workload scheduler. So far this has only been achieved in

Fig. 2. Slurm Burst Buffer WorkFlow [2]

Fig. 3. Example Submission Script from Slurm Documentation [3]

closed environments or with limited integration to HPC job
schedulers. Having this software and a validated hardware
infrastructure put into use by the University of Cambridge
shows the potential for these systems in research computing.
Its flexibility allows the system to keep up the pace with
the changing landscape of HPC computing in research and
industry. The Data Accelerator will provide users with the
ability to significantly improve their I/O performance. In
the example of the University of Cambridge, the traditional
Lustre scratch storage would be x10 the cost to achieve the
same performance as the DAC. This system also allows for
the preparation and experimentation required for any further
procurement of SSD based storage systems.

REFERENCES

[1] G. K. Lockwood, Reviewing the state of the art of burst buffers.
https://glennklockwood.blogspot.com/2017/03/, March 2017.

[2] M Jette, T Wickberg, ”Slurm Burst Buffer Support.”
https://slurm.schedmd.com/SLUG15/Burst buffer.pdf, 2015.

[3] Slurm, ”Slurm Burst Buffer Guide.”
https://slurm.schedmd.com/burst buffer.html, April 2018.


