
Evaluation of HPC
Application I/O on
Object Storage Systems

- 1 -

Nov 12nd, 2018
PDSW-DISCS

Jialin Liu, Quincey Koziol
Gregory F. Butler

Neil Fortner, Mohamad Chaarawi
Houjun Tang, Suren Byna

Glenn K. Lockwood
Ravi Cheema

Kristy A. Kallback-Rose
Damian Hazen, Prabhat

NERSC@LBL: SSG, DAS, ATG
Jialin Liu, Quincey Koziol, Gregory F. Butler

Glenn K. Lockwood, Ravi Cheema

Kristy A. Kallback-Rose

Damian Hazen, Prabhat

CRD@LBL: SDM
Houjun Tang, Suren Byna

The HDF Group
Neil Fortner

Intel
Mohamad Chaarawi

About the Team

Trends in High Performance Storage

Hardware
● Now: SSD for on platform

storage
● Soon: Storage Class Memory,

byte addressable, fast and
persistent

● Soon: NVMe over Fabrics for
block access over high speed
networks

Parallel file systems
● Now: POSIX-based file system

○ Lustre, GPFS
● Potential replacement:

○ Object stores (DAOS,
RADOS, Swift, etc.)

POSIX and Object Store

“POSIX Must Die”, Jeffrey B. Layton, 2010, http://www.linux-mag.com/id/7711/comment-page-14/
“What’s So Bad About POSIX”, Glenn K. Lockwood, NextPlatform: https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/

Glenn K. Lockwood, 2017

“POSIX Must Die”:
• Strong consistency requirement
• Performance/Scalability issue
• Metadata bottleneck

Jeffrey B. Layton, 2010, Linux Magazine

POSIX Still Alive:
• Without POSIX writing applications

would be much more difficult.
• Extremely large cruise ship that people

love to travel upon

Benefits of Object Store:
• Scalability: no lock
• Disk-friendly I/O: massive read/write
• Durability
• Manageability
• System Cost

However:
• Immutable objects: no update-in-place

○ Fine-grained I/O doesn’t work
• Parity/replication is slow/expensive
• Rely on auxiliary service for indexing
• Cost in developer time

http://www.linux-mag.com/id/7711/comment-page-14/
https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/

Object Store Early Adopter: CERN

❖ Mainly used for archiving big files
➢ 150PB tape as backend, 10PB disk as cache
➢ 10s of GB/s throughput, single stream to tape: 400MB/s

❖ Why Ceph:
➢ delegate disk management to external software

➢ rebalancing, striping, erasure coding

Applications Can’t Use Object Store Directly

• Problem:
– Apps are written with today’s POSIX APIs: HDF5, MPI-IO, write/read
– Object Stores only supports non-POSIX: put / get

Dream World Reality

HPC Apps and Object Stores

• Evaluate object store systems, with science applications

– Explore parallel I/O with object store API

– Understand the object I/O internals

• Understand impact of object store on HPC applications and users

– How much do HPC applications need to change in order to use

object stores?

– What is the implication to users?

Motivation

● HPC Users

● HPC Applications

● Object API

● Object Store

● POSIX Interface

● POSIX File System

Step 1: Which Object Store Technologies?

Google Storage

MarFS @LANL

Mero @Seagate

Requirements:
○ Open Source
○ Community Support
○ Non-POSIX
○ Applicable to HPC

?

Step 2: Which HPC Applications?

• H5BOSS: Many Random Small I/O

Cluster Identified in Plasma Physics
Credit: Md. Mostofa Ali Patwary et al.FastQuery identifies 57 million particles

with energy < 1.5
Credit: Oliver Rübel et al.

Concept of Baryon Acoustic
Oscillations, with BOSS survey
Credit: Chris Blake et al.

Requirements:
○ Scientific Applications
○ Representative I/O Pattern

• VPIC: Large Contiguous Write • BD-CATS: Large Contiguous Read

HDF5: Scientific I/O Library and Data Format

HDF5:

• Hierarchical Data Format v5
• 1987, NCSA&UIUC
• Top 5 libraries at NERSC, 2015
• Parallel I/O

10

19 out of the 26 (22 ECP/ASCR + 4 NNSA)

apps currently use or planning to use HDF5

(Credit: Suren Byna)

HDF5 Virtual Object Layer (VOL)

• A layer that allows developers to intercept all storage-related HDF5 API calls and
direct them to a storage system

• Example VOL Connectors:
– Data Elevator, Bin Dong
– ADIOS, Junmin Gu
– Rados, Neil Fortner
– PLFS, Kshitij Mehta
– Database, Olga Perevalova
– DAOS, Neil Fortner
– ...

New VOLs

Example VOL: Swift
int main ()
{
MPI_Init();
…
H5Fcreate();
for (i=0;i<n;i++)
 buffer[i]=i;
H5Dcreate();
H5Dwrite();
H5Fclose();
...
MPI_Finalize();
}
HDF5 C Application HDF5 Source Code

herr_t H5Dwrite()
{
.
.
.
.
H5VL_dataset_write()
.
.
.
}

const H5VL_class_t
{
H5VL_python_data
set_create,
H5VL_python_data
set_open,
H5VL_python_data
set_read,
static herr_t
H5VL_python_dat
aset_write() {
}
}
Generic Python VOL

Connector

static herr_t
H5VL_python_dataset_write() {
 PyObject_CallMethod(“Put”);
}

import numpy
import swiftclient.service

swift.upload()

“Callback function” Python Swift Client

Mapping Data to Object
DAOS:

● HDF5 File -> DAOS Container
● Group -> DAOS Object
● Dataset -> DAOS Object
● Metadata -> DAOS Object

DAOS Object:
● Key: Metadata
● Value: Raw data

RADOS:
● HDF5 File -> RADOS Pool
● Group -> RADOS Object
● Dataset -> RADOS Object

RADOS Object:
● Linear Byte Array: Metadata
● Key: Name
● Value: Raw data

Swift:
● HDF5 File -> Swift Container
● Group -> Swift Sub-Container: ‘Group’
● Dataset -> Swift Object
● Metadata -> Extended Attribute

Swift Object:
● Key: Path Name
● Value: Raw data

Parallel Object I/O

Data Read/Write

• Independent I/O
• Collective I/O is possible in the future

Metadata Operations

• Native HDF5: Collective or Independent I/O w/MPI to POSIX
• VOLs: Independent - highly independent access to object store
• VOLs: Collective I/O is optional

Data Parallelism for Object Stores

• HDF5 Dataset Chunking is important
• Lack of fine-grained partial I/O in object stores is painful, e.g.,

Swift 14

Early Evaluation of Object Stores for HPC
Applications

• VOL proof-of-concept
• Compared RADOS and Swift on identical hardware
• Evaluated the scalability of DAOS and Lustre separately
• Compute nodes

– 1-32 processes
– 1-4 nodes

• Storage nodes
– 4 server
– 48 OSDs

15

Our Object Store Testbeds

❖ Swift, RADOS: Testbed @ NERSC
➢ 4 servers, 1.1 PB capacity, 48 LUNs/NSDs
➢ Two failover pairs for Swift, but no failover on Rados
➢ Servers are connected with FDR Infiniband
➢ Access to server is through NERSC gateway nodes

❖ Lustre: Production file system @ NERSC
➢ 248 OST/OSS, 30 PB capacity, 740 GB/sec max bandwidth
➢ 130 LNET, Infiniband

❖ DAOS: Boro cluster at Intel
➢ 80 nodes, 128G memory each
➢ Infiniband single port FDR IO with QSFP
➢ Mercury, OFI and PSM2 as network provider

Evaluation: VPIC

Evaluation: H5BOSS

Single Node Test

Multi-Node
Tests

RADOS and Swift both failed with
more datasets, and on multiple nodes

Evaluation: BD-CATS

Observation

Lustre Read > Write Lustre Readahead, Less Locking

Rados > Swift Partial Read, Librados

Daos Scale with nProc

Object I/O Performance Tuning

● Further investigation needed:
○ Object Stores for HPC need more research and engineering effort
○ Traditional HPC I/O optimizations can be useful in optimizing Object I/O, e.g., Locality aware

● From this we can see:
○ Placement groups are an area to focus on for tuning I/O
○ Disabling replication has large performance benefit (of course!)

Object Store I/O Internals & Notes
• Most object stores are designed to only handle I/O on entire objects, instead of finer

granularity I/O, such as provided by POSIX, which is required by HPC applications.

• Swift does not support partial I/O on object. Although it supports segmented I/O on large
objects, the current API can only read/write an entire object. This stops us from performing
parallel I/O with chunking support in HDF5.

• RADOS offers librados for clients to directly access its OSD (object storage daemon), which is
a performance benefit as the gateway node can be bypassed.

• Mapping HDF5's hierarchical file structure to flat namespace in object store will require
additional tools for users to easily view the file's structure.

• Traditional HPC I/O optimization techniques may be applied in object stores, for example,
two-phase collective I/O, as currently each rank issues the I/O to object independently. A
two-phase collective I/O-like algorithm is possible when considering the object locality.

• Object stores trade performance for durability. Reducing the replication size (default is
frequently 3) when durability is not a concern for HPC application can increase the
bandwidth.

Porting Had Very Low Impact to Apps

H5VLrados_init() ;
H5P_set_fapl_rados() ;

int main()
{
MPI_Init();
...
H5Fcreate();
for (i=0;i<n;i++)
 buffer[i]=i;
H5Dcreate();
H5Dwrite();
H5Fclose();
...
MPI_Finalize();
} Before

int main()
{
MPI_Init();
...
H5VLrados_init();
H5Pset_fapl_rados();
H5Fcreate();
for (i=0;i<n;i++)
 buffer[i]=i;
H5Dcreate();
H5Dwrite();
H5Fclose();
...
MPI_Finalize();
} After

Lines of Code Changed

~1-2% code change

Possible in Future:
● module load rados
● module load lustre
● module load daos

VPIC H5BOSS BDCATS

SWIFT 7 6 7

RADOS 7 7 7

DAOS 4 4 4

Conclusion

1. Object stores shows better scalability than POSIX filesystem in
various HPC I/O patterns*

2. Object stores are still young for HPC, but traditional HPC I/O
optimization may be easily applied

3. HDF5 VOL connectors enable users to use object store
transparently, with very small modifications to their applications.

4. DAOS and other NVM based object stores are promising for
on-platform storage tier

* However, current evaluation scale is small

Thanks

Project Repo: https://github.com/NERSC/object-store

Rados VOL:
https://bitbucket.hdfgroup.org/users/nfortne2/repos/hdf5_naf/browse?at=h
df5_rados

Daos VOL:
https://bitbucket.hdfgroup.org/users/nfortne2/repos/hdf5_naf/browse?at=r
efs%2Fheads%2Fhdf5_daosm

Swift VOL:

https://github.com/valiantljk/sci-swift

24

https://github.com/NERSC/object-store
https://bitbucket.hdfgroup.org/users/nfortne2/repos/hdf5_naf/browse?at=hdf5_rados
https://bitbucket.hdfgroup.org/users/nfortne2/repos/hdf5_naf/browse?at=hdf5_rados
https://bitbucket.hdfgroup.org/users/nfortne2/repos/hdf5_naf/browse?at=refs%2Fheads%2Fhdf5_daosm
https://bitbucket.hdfgroup.org/users/nfortne2/repos/hdf5_naf/browse?at=refs%2Fheads%2Fhdf5_daosm
https://github.com/valiantljk/sci-swift

