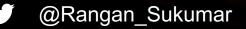
Architectural Challenges Emerging From The Convergence of Big Data, HPC and Al

PDSW-DISC Keynote @ SC18

ssukumar@cray.com



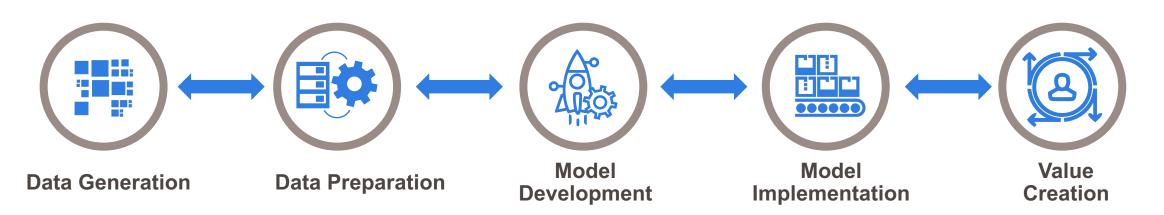
in https://www.linkedin.com/in/rangan/

SAFE HARBOR STATEMENT

This presentation may contain forward-looking statements that are based on our current expectations. Forward looking statements may include statements about our financial guidance and expected operating results, our opportunities and future potential, our product development and new product introduction plans, our ability to expand and penetrate our addressable markets and other statements that are not historical facts.

These statements are only predictions and actual results may materially vary from those projected. Please refer to Cray's documents filed with the SEC from time to time concerning factors that could affect the Company and these forward-looking statements.

ARCHITECTING A CONVERGENT SYSTEM



Levels of Architectural Maturity Towards Convergence

- Level 1: Can a system run HPC, Big Data and AI applications/workloads?
- Level 2: Can a system execute a "convergent workflow" consisting of HPC, Big Data and AI tools, codes and frameworks in reasonable time?
- Level 3: Can a system accelerate/scale the workflow when required?
- Level 4: Given a workflow, is this the top "performant" system one can build?

THE CHALLENGE OF ARCHITECTING HPC SYSTEMS

Design specifications

- maximize(performance-per-\$)
- minimize(\$-to-insight)
- maximize(architected performance * community productivity) <= budget
- minimum(benchmark-performance) >= scaling factor
- maximum(app-to-app performance variation) <= epsilon
- minimize(operating costs ~ power, downtime, human resources)

• Figures-of-merit

• FLOPS, Programmability, Utilization, Benchmark, Scientific Innovation, ...

THE CHALLENGE OF ARCHITECTING BIG-DATA SYSTEMS

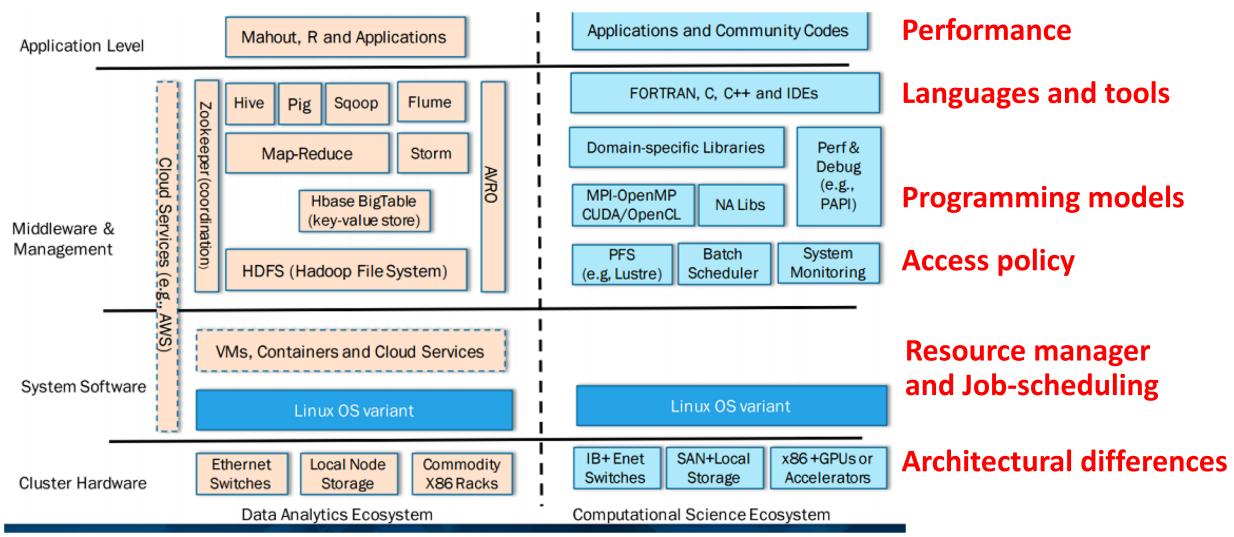
Design specifications

- maximize(ROI-per-byte)
- maximize(capacity * consistency * availability * fault-tolerance)
- maximize(open-source tool support)
- minimize(time-to-prototype + time-to-production)
- minimize(security risk)
- minimize(operating costs ~ power, downtime, human resources)

Figures-of-merit

• ROI, Elasticity, Multi-tenancy, Ease-of-use, Time-to-accuracy,...

TODAY: IT IS THE TALE OF TWO ECOSYSTEMS



J. Dongarra et al., Exascale computing and Big Data: The next frontier, ACM Communications 2015

© 2018 Cray Inc.

REQUIREMENTS: MODE OF OPERATION

	Scientific Computing	Enterprise Computing	
Primarily used for	Solving equations	Search/Query, Machine learning	
Philosophy	Send data to compute	Send compute to data	
Efficiency via	Parallelism	Distribution	
Scaling expectation	Strong (scale-up)	Weak (scale-out)	
Programming model	MPI, OpenMP, etc.	Map-reduce, SPMD, etc.	
Popular languages	FORTRAN, C++, Python	Java, Scala, Python, R	
Design strength	Multi-node communication using an interconnect	Built-in job fault tolerance over Ethernet	
Access model	On-premise	Cloud-like	
Preferred algebra	Dense Linear	Set-theoretic / Relational	
Memory access	Predictable	Random	
Storage	Centralized, POSIX/RAID	Decentralized, Duplication	

REQUIREMENTS : WORKFLOWS + WORKLOAD

	Scientific Computing	Enterprise Computing
Data (Structured)	Vector, Matrix, Tensor	Table, Key-Values, Objects
Data (Unstructured)	ta (Unstructured) Mesh, Images (Physics-based) Documents,	
Visualization	Voxel, Surface, Point Clouds	Word Cloud, Parallel Coordinates, BI Tools
Validation	Cross-validation (ROC curves, statistical significance)	Manual / Subject matter expert, A/B testing
Extract, Transform, Load	Fourier, Wavelet, Laplace, etc. Cartesian, Radial, Toroidal, etc.	File-format transformations e.g. CSV to VRML
Search (Query)	Properties such as periodicity, self- similarity, anomaly, etc.	SQL, SPARQL, etc. (Sum, Average, Group by)
Funding Model	Non-profit grand challenge (Answer matters)	Value-driven (Cost matters)

Sukumar, S. R., et al., (2016, December). Kernels for scalable data analysis in science: Towards an architectureportable future. *In the Proc. Of the 2016 IEEE International Conference on Big Data*, pp. 1026-1031.

REQUIREMENTS: PROCESS AND DEPLOYMENT

	Scientific Computing	Enterprise Computing
Model	Domain-specific	CNN, RNN, LSTM, GAN etc.
Baseline	BaselineTheoreticHumans, Other MLe.g. Navier StokesHumans, Other ML	
Parallelism	arallelism Model, Ensemble Data	
Use Case	Computational Steering Speech, Test Image interpre Proxy models Hyper-personalization	
Source File System	Lustre and GPFS	HDFS, S3, NFS etc.
Figure of Merit	Interpretability, Feasibility	Time-to-accuracy, Model-size
Training Data	O(GBs) per sample, O(10 ³) samples, O(10) categories	O(KBs) per sample, O(10 ⁶) samples, O(10 ⁴) categories
Data Model	HDF5, NETCDF	Relational, Document, Key-Value

REQUIREMENTS: USER EXPERIENCE

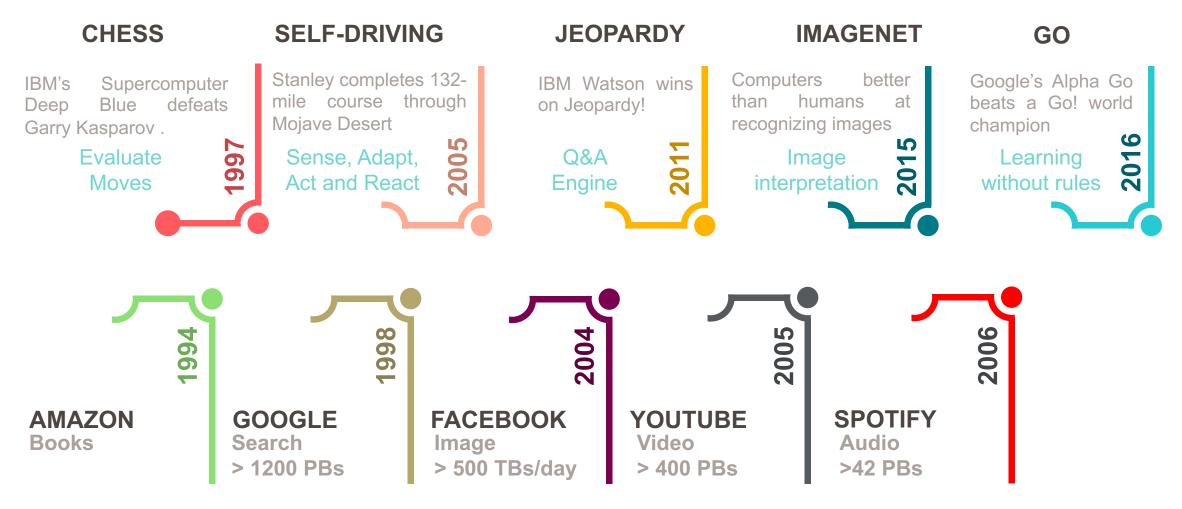
	Scientific Computing	Enterprise Computing
Programming	Vendor libraries and compilers	Open-source services and APIs
Preferred Deployment	Bare metal	Virtualized, Containers
Popular Architecture	Homogenous	Heterogenous
"Systems" Literacy	High	Low
Scheduling	Batch	Interactive, Persistent
Resource Managers	SLURM, SGE, etc.	Mesos, Kubernetes, etc.
Data in	Files	Databases (in-memory, schema)
Software	Write-once Run-many	Write-Many Run-Many
Access Interface	Terminal, SSH	Jupyter, Web-based IDEs

IS CONVERGENCE NECESSARY?

AI methods benefit from HPC best practices

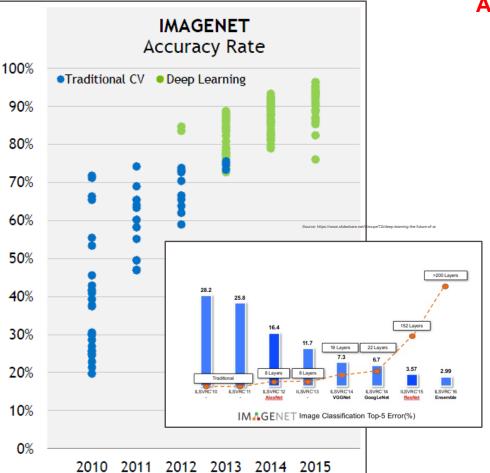
CONVERGENCE HEADLINES: BIG DATA + AI

MILESTONES IN ARTIFICIAL INTELLIGENCE



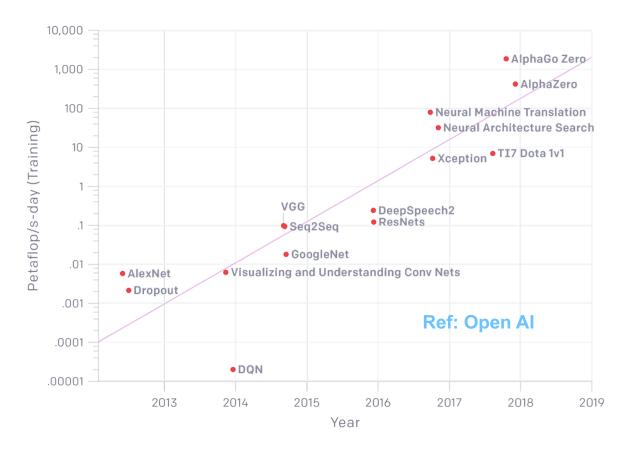
GROWTH IN UNSTRUCTURED BIG DATA

HPC-SCALE REQUIREMENTS AT AI PRACTITIONERS



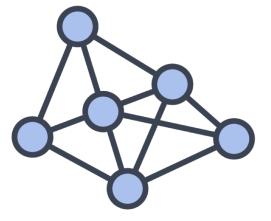
Source: NVIDIA-ces-2016-press-conference

ALEXNET TO ALPHAGO ZERO: A 300,000x INCREASE IN COMPUTE



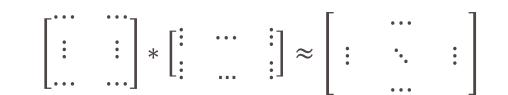
BENEFITS OF HPC ADOPTION

Graph Analytics



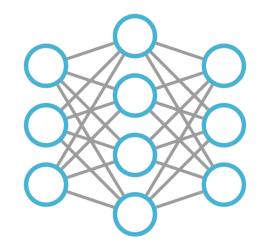
Handle 1000x bigger datasets with a 100x better speed-up with queries

Matrix Methods



Get 2-26x over Big Data Frameworks like Hadoop, Spark (for the same cluster-size)

Deep Learning



95%+ scalability efficiency that can reduce training time from days to hours

Best practices:

- Application fine-tuning / Performance optimization
- High-performance interconnect
- Algorithmic cleverness to trade compute and i/o
- Overlap compute and i/o with programming model

HPC BUILDS THE MODELS OF TOMORROW

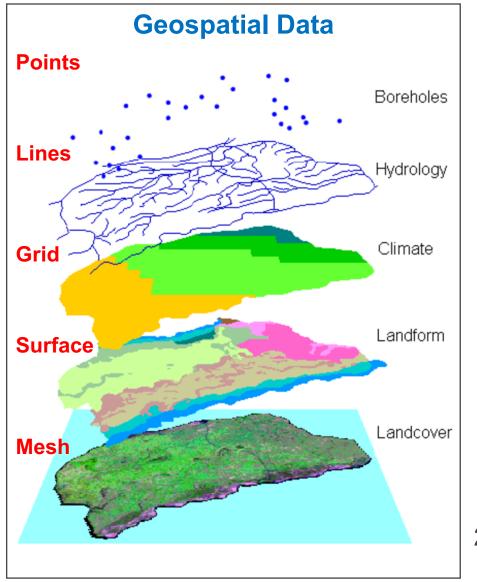
MORE DATA, BIGGER MODELS, NEED FOR MORE EFFICIENT AND PRODUCTIVE HARDWARE

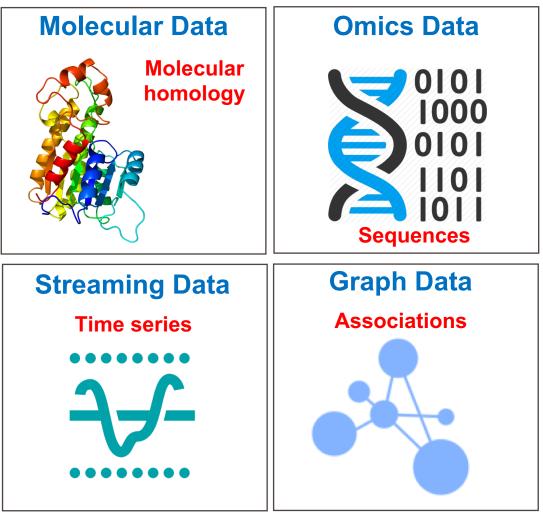
Figures-of-merit	State-of-practice	Projected 1-2 years ahead
Training-time to best accuracy	5+ days	2+ hours
Model Cost / TB (AWS GPUs)	~\$25K (ResNet training on 80 GPUs for 5 days)	~10K
Hardware Efficiency	Network Depth: Flops::20x: 16x (based on AlexNet-2012 and ResNet-2015)	O(Teraflops) / problem
Statistical Efficiency	Depth: Accuracy:: 20x:13+ (based on AlexNet-2012 and ResNet-2015)	O(Teraflops) / problem
Need for compute as data grows	Data: Flops: Error:: 2x: 5x: 3+ (based on DeepSpeech1 and DeepSpeech2)	O(Petaflops) / problem
Training Cadence	~ Monthly	~ Daily
# of models per organization	1x	10-100x

IS CONVERGENCE NECESSARY?

Al methods offer tremendous capabilities for scientific data

DIFFERENT SHAPES OF SCIENTIFIC DATA





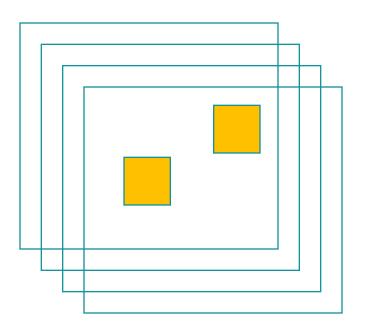
2D, 3D, 4D volumes, Higher precision (32, 64 bit), Higher # channels (3, 16, 1024), Sparse + Dense, Resolution

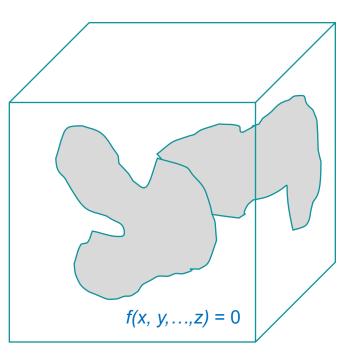
DIFFERENT SEARCH SPACES OF SCIENTIFIC DATA

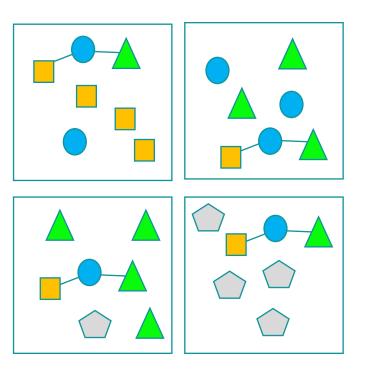
Feature-based

Function-based

Pattern-based



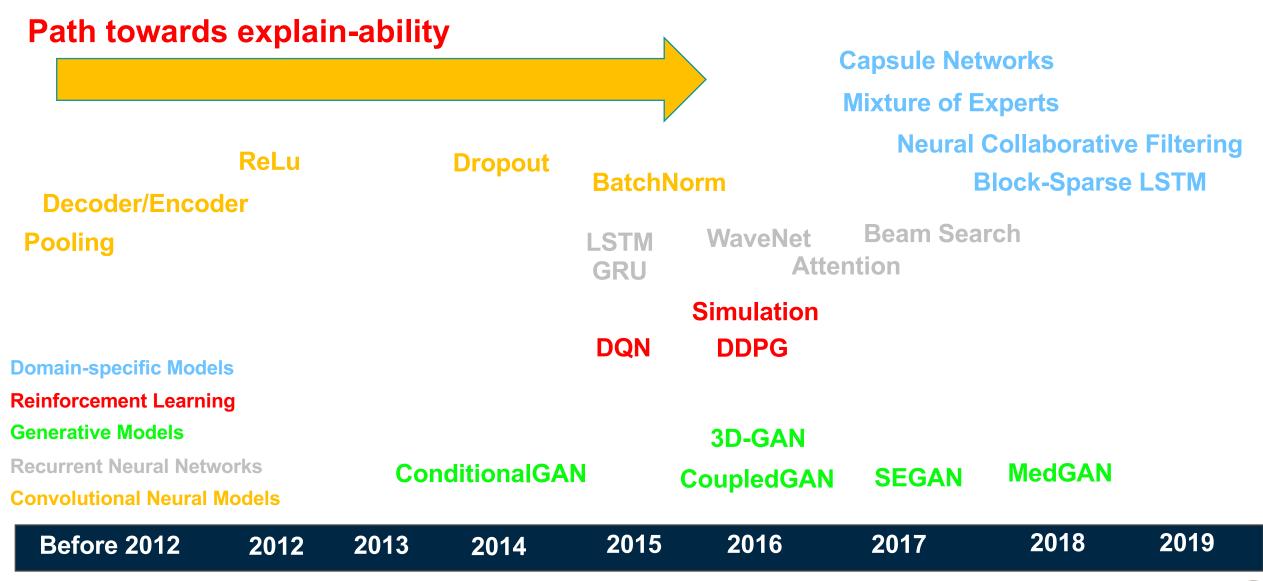




Structured Data Feature-space is ill-posed Search is well-defined Unstructured Data Feature-space is theoretical Search is empirical Semi-Structured Data Feature-space to be discovered Search is P or NP-hard

Opportunity to create the "models of tomorrow"

MODELS EXPLORE AUTO-ENGINEERED FEATURE SPACES



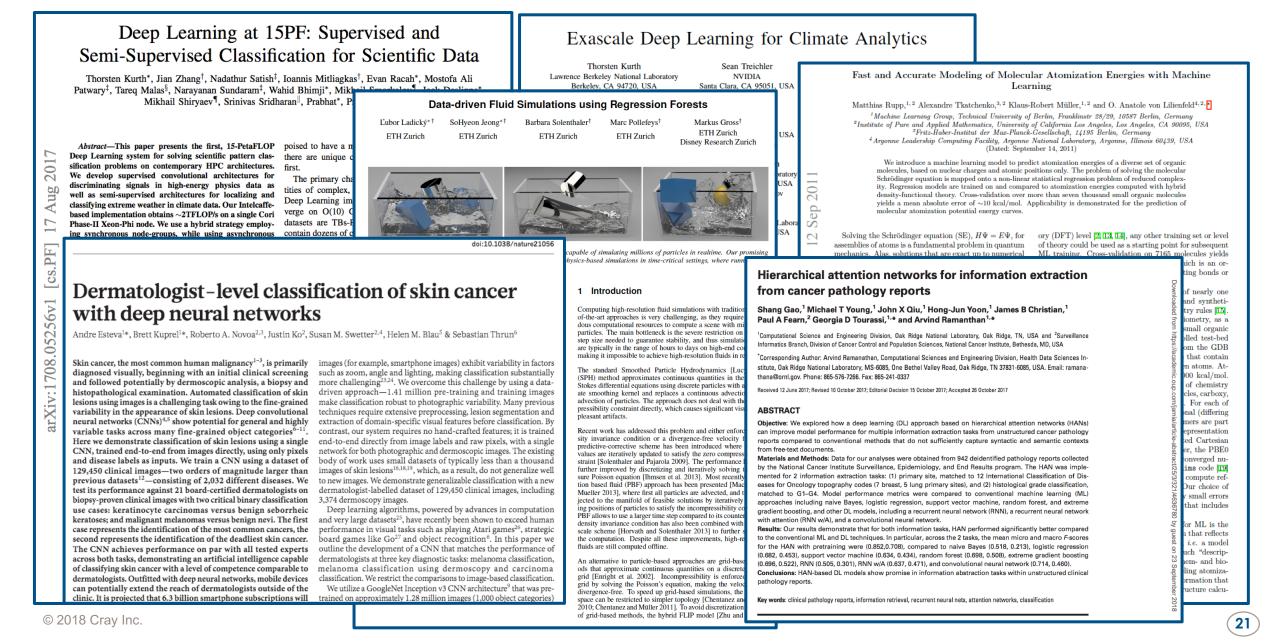
© 2018 Cray Inc.

AI ADOPTION IS INCREASING IN THE SCIENCES

Domain-Specific Models Combinatorial Patterns • Fluid Dynamics • Search for meta-stable states Schrodinger Equation • Search for particles • Full-Wave Inversion • Search for N-way correlations • Search in a high-dimensional feature • Integration with user-facilities space Complexity Emerging **Use-cases Model Repurposing** Workflows and Automation Model Smarter initialization for simulations • Deep Learning for X Feature engineering Computational steering Hybrid models of theory and AI • Predictive modeling Hypothesis creation with interpretation

Computational Complexity

CONVERGENCE HEADLINES: AI @ HPC CENTERS

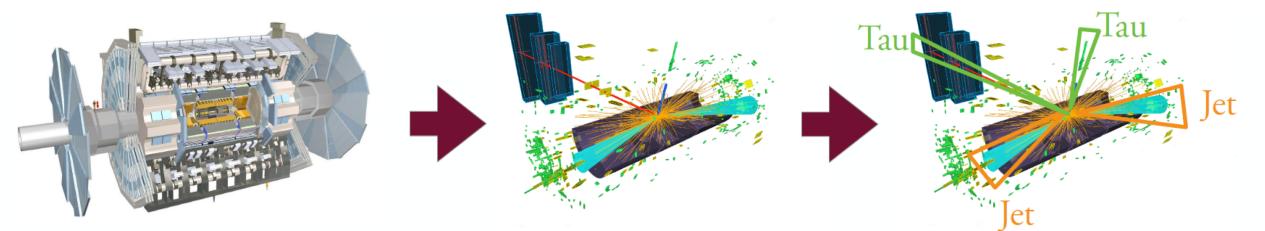


EXAMPLES OF CONVERGENT WORKFLOWS

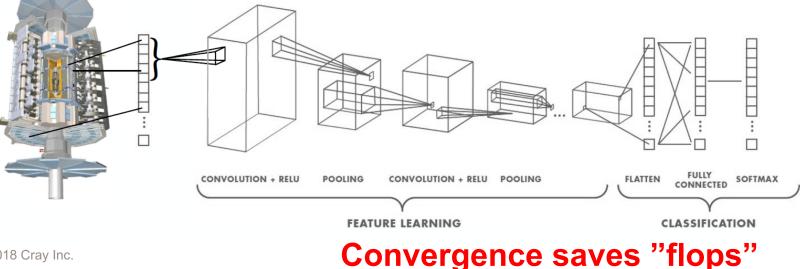
Big Data and AI @ HPC Centers

#1: COMPUTING AT SCIENTIFIC FACILITIES

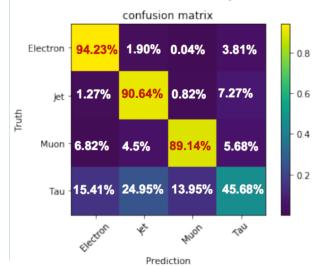
State-of-the-art: Took 3000 collaborators nearly 10 years to build



Using the labels from previous data analysis efforts....

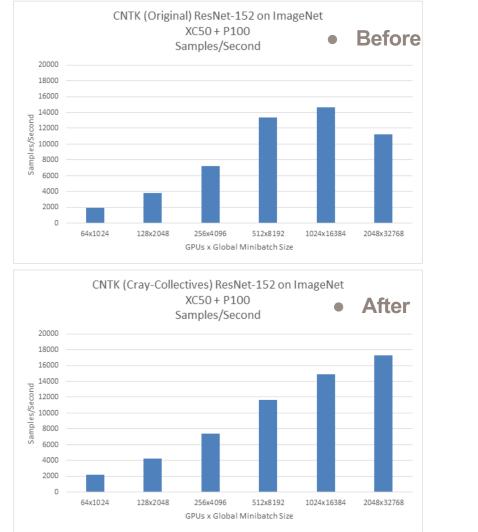


Saves compute cycles....



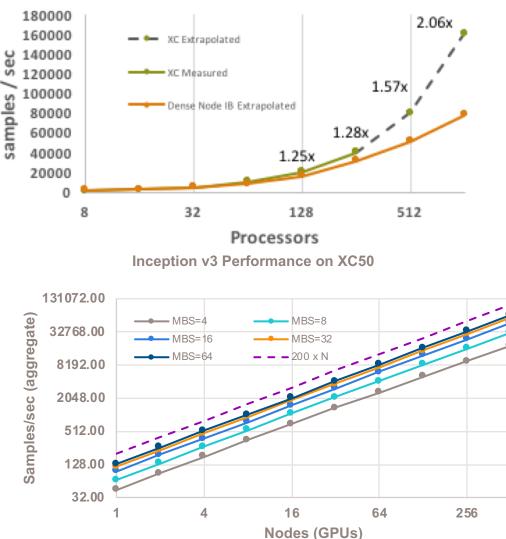
#2: DISTRIBUTED TRAINING OF AI/ML CODES

State-of-the-art: Takes 6+days to train a model



Convergence "trains" in minutes

XC and IB 8x Nodes Relative Performance (Alexnet)



S.R. Sukumar et al., in the Proceedings of the NIPS Workshop on Deep Learning at Supercomputing scale, 2017

#3: INTERACTIVE ANALYSIS OF BIG DATA

State-of-the-art: Exploratory data analysis is not interactive

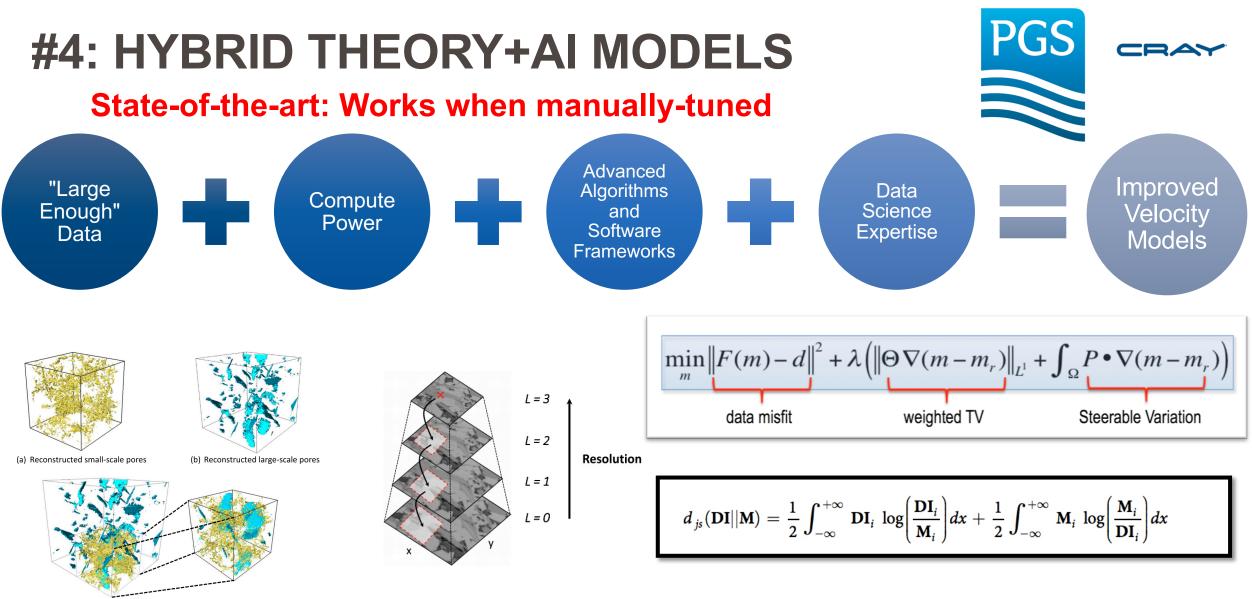
- Cori @ NERSC
- 1630 compute nodes
- Memory: 128 GB/node,
- 32 2.3GHz Haswell cores/node

Gittens, Alex, et al. "Matrix factorizations at scale: A comparison of scientific data analytics in spark and C+ MPI using three case studies.", IEEE International Conference on Big Data.2016.

Convergence enables

Science Area	Format/Files	Dimensions	Size
MSI	Parquet/2880	8,258,911 imes 131,048	1.1TB
Daya Bay	HDF5/1	$1,099,413,914\times 192$	$1.6 \mathrm{TB}$
Ocean	HDF5/1	6,349,676 imes 46,715	$2.2 \mathrm{TB}$
Atmosphere	HDF5/1	$26,542,080\times 81,600$	16 TB

"iterative discovery"		Nodes / cores	MPI Time	Spark Time	Gap
		50 / 1,600	1 min 6 s	4 min 38 s	4.2x
	NMF	100 / 3,200	45 s	3 min 27 s	4.6x
		300 / 9,600	30 s	70 s	2.3x
	PCA	100 / 3,200	1 min 34 s	15 min 34 s	9.9x
		300 / 9,600	1 min	13 min 47 s	13.8x
	(2.2TB)	500 / 16,000	56 s	19 min 20 s	20.7x
© 2018 Cray Inc.	РСА (16ТВ)	MPI: 1,600 / 51,200 Spark: 1,522 / 48,704	2 min 40 s	69 min 35 s	26x

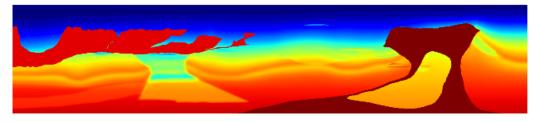


(c) Integrated small- and large-scale pores

© 2018 Cray Inc.

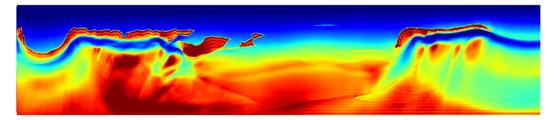
#4: HYBRID THEORY+AI MODELS

"Ground truth" Benchmark



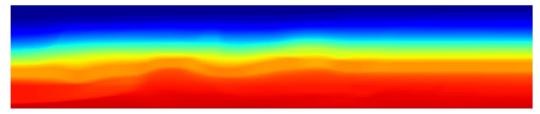
Conventional FWI

Synthetic benchmark with known subsurface geometry and seismic reflection data.



Conventional FWI attempts to derive a more accurate velocity model.

FWI with Machine Learning



Using machine learning (regularization and steering) to guide the convergence process.

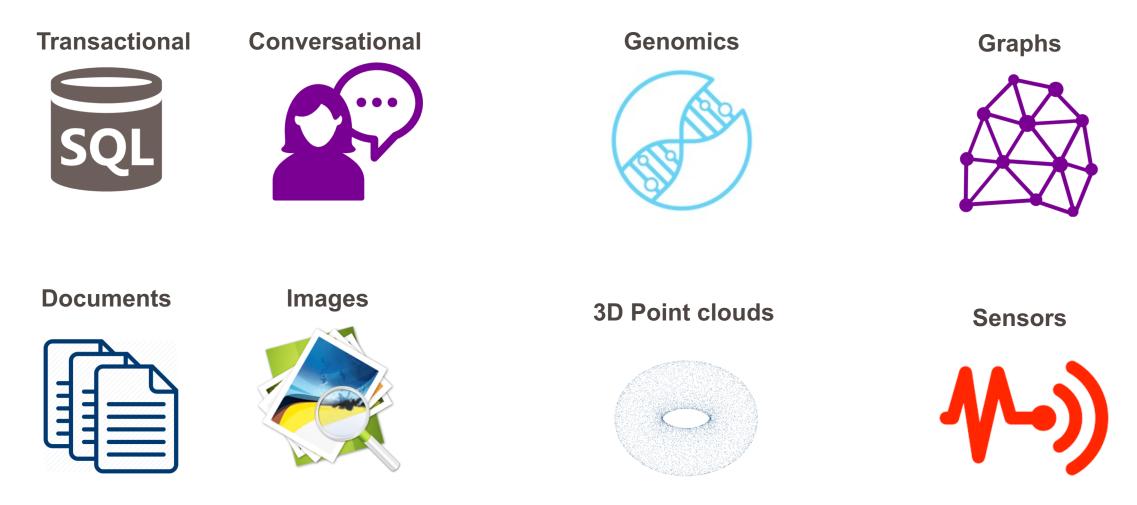
Convergence enables "higher fidelity" to reality

© 2018 Cray Inc.

TRENDS AND CHALLENGES

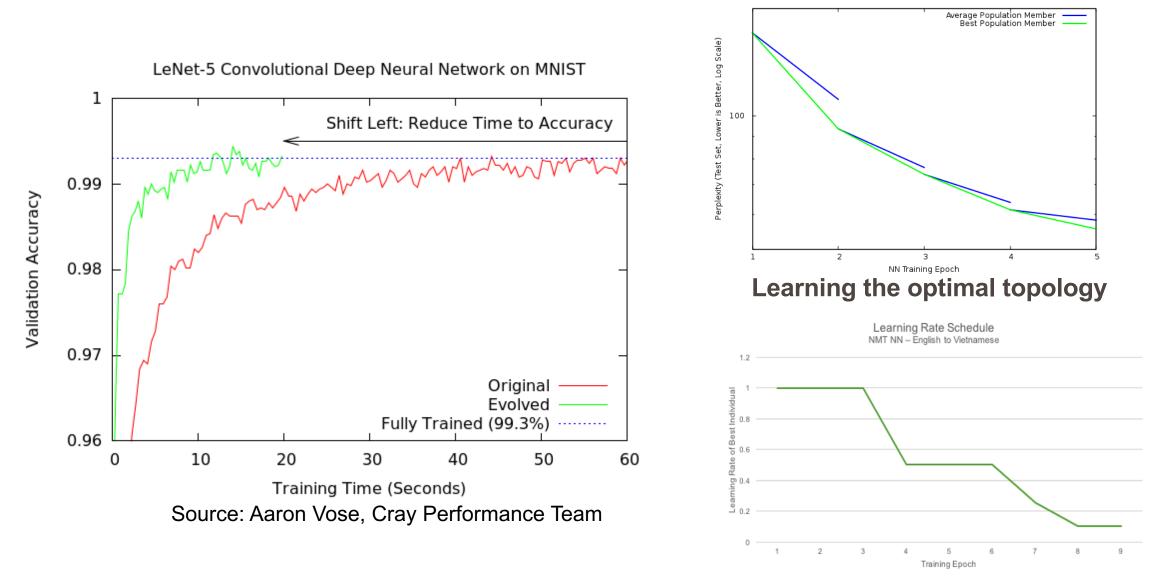
TREND: MULTI-MODEL DATA

INCREASING SPATIAL, TEMPORAL AND SPECTRAL RESOLUTION



CHALLENGE: I/O PATTERNS OF HPO LESS STUDIED

HYPERPARAMETER OPTIMIZATION CRITICAL FOR MULTI-MODEL DATA



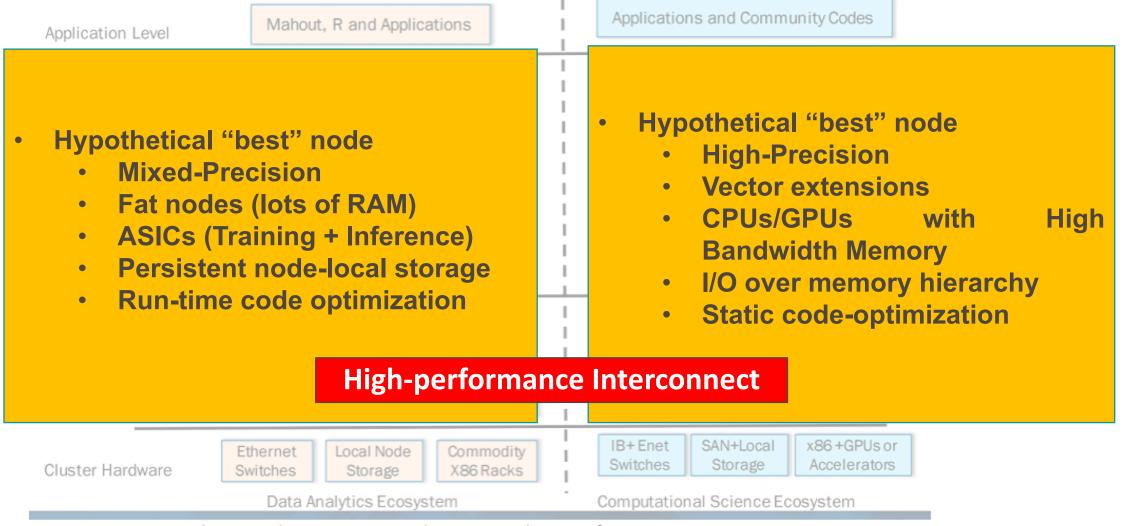
Learning a "learning-rate" schedule

TREND : PROLIFERATION OF APPLIANCES

... SOLVES THE COMPUTE PROBLEM BUT CREATES NEW I/O PROBLEMS.

CHALLENGE: NEED A SMARTER INTERCONNECT

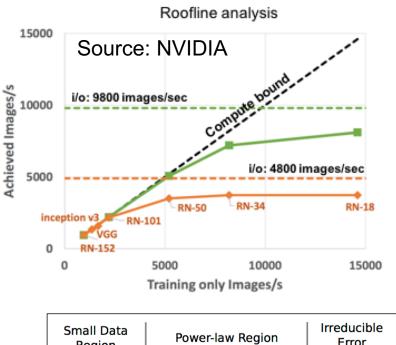
THE DATA MOVEMENT, MANAGEMENT AND I/O PATTERNS...

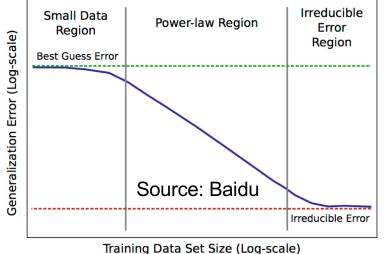


J. Dongarra et al., Exascale computing and Big Data: The next frontier, ACM Communications 2015

...WILL NEED A SMARTER INTERCONNECT.

TREND: SOFTWARE TRICKS OUTPERFORMING HARDWARE





ResNet-50 Success	Time-to- accuracy	How many GPUs?	Scalability Efficiency
Facebook (Caffe2)	2 days 1 hour	352 GPUs 256	90% (large-batch)
IBM PowerAl (Caffe)	50 minutes	256 GPUs	95% (large-batch)
Google (TensorFlow)	~24 hours	64 TPUs	>90%
Preferred Networks (Chainer)	15 minutes	1000 GPUs	>90%
Cray @ CSCS (Tensorflow)	<14 minutes	1000 GPUs	~>95%
Tencent	< 7 minutes	2048 GPUs	Large batch @ 64K
Fast.ai on AWS (Cost: \$40)	~18 minutes	128 GPUs	Not available (large batch)

CHALLENGE: SOFTWARE FOR NEW HARDWARE

• Software : 7-10x improvement in time-to-accuracy in 1 year on CNNs

Method	Who?
LARS (MBS – 32K)	NVIDIA
Learning Rate schedule (~64K)	Facebook
Gradient Clipping	Microsoft
Mixed Precision Training	Baidu
Optimizer Tuning (~32K) - K-FAC - Neumann	Google Research (now part of TensorFlow)
Batch Normalization	Google

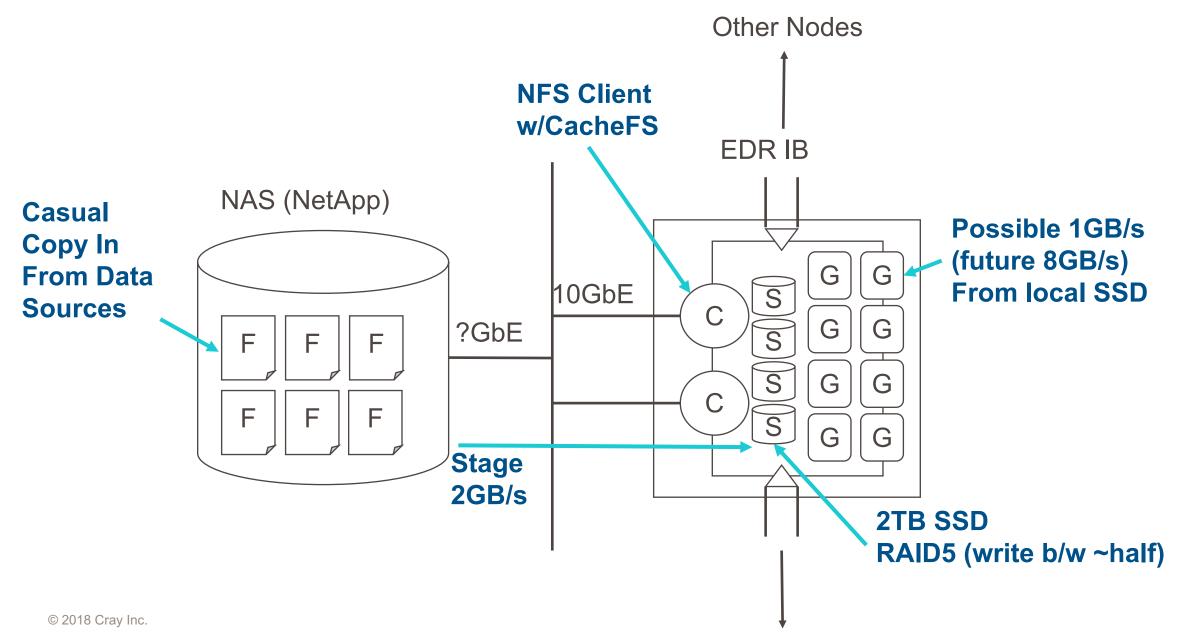
- Hardware: **10-1000x in 2 years***
 - Training
 - Intel, AMD, ARM, NVIDIA
 - Google TPU v2
 - Cerebras
 - Graphcore
 - Habana
 - 30+ startups....
 - Inferencing
 - Intel Nervana
 - Wave Computing
 - Groq

TREND: TRIGGERED TRAINING

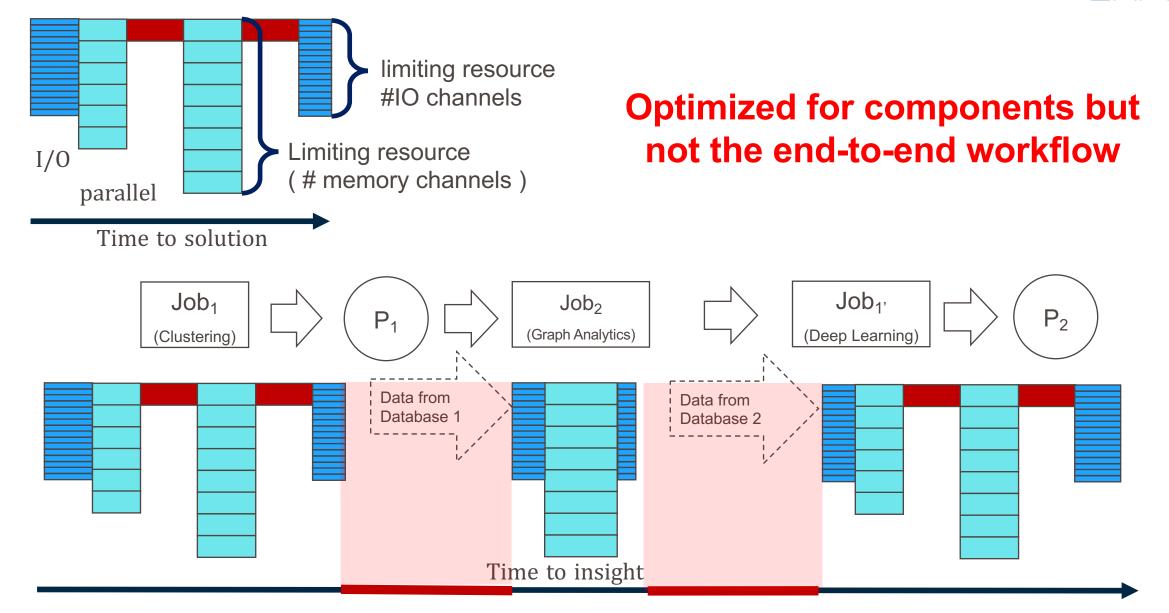
TRAINING PATTERNS DETERMINE SUPPORTING INFRASTRUCTURE FOR STORAGE AND I/O

Training	Use-case	Data size growth in unit time	Time to quality metric today	# of xPUs
Continuous	Internet-of-things	1:1	O(minutes)	O(10)
Cadence	Uber Eats prediction	n:1 (n>>1)	O(days)	O(10)
Delta	Speech (rare words)	n:1 (n~1)	O(days)	O(1)
One-time	Lower-order physics approximations	10-100n:1	O(weeks)	O(100+)
Throughput	Speech and speaker detection	1:# of users	O(days)	O(100+)

CHALLENGE: POTENTIAL OFF-NODE I/O REQUIREMENT



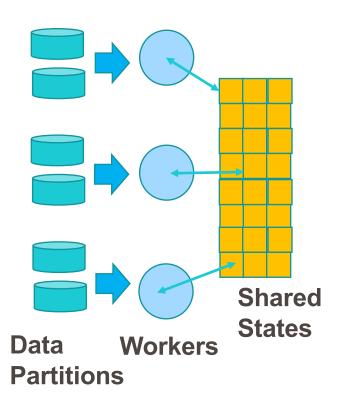
TREND: MULTI-TOOL WORKFLOWS ARE THE NORM



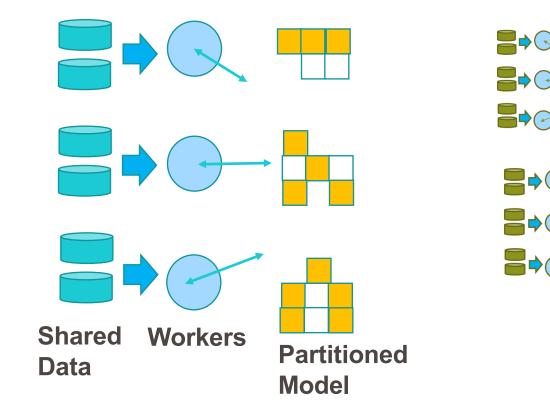
 $\square \triangle$

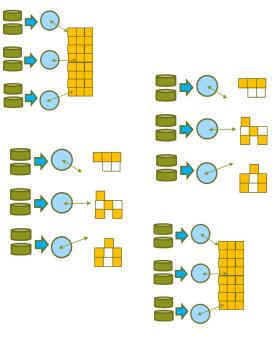
CHALLENGE: FUTURE PARALLELISM

Data-Parallelism



Model-Parallelism

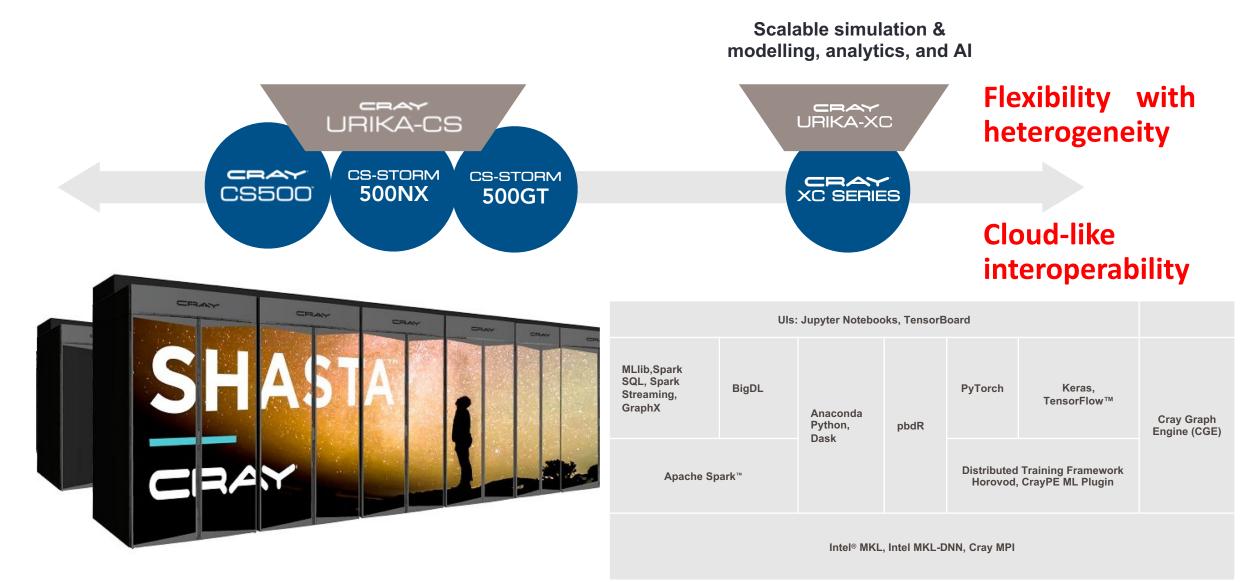




Ensemble-Parallelism

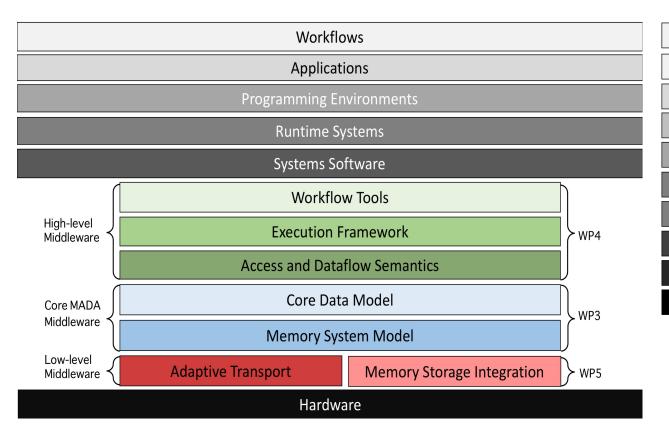
- Model-Parallelism (Training, Inferencing)
- Higher Resolution Images
- Intra-node vs. Inter-node bandwidth

TREND: CONVERGED HARDWARE+SOFTWARE



CHALLENGE: CONVERGENCE REQUIRES WORK

Convergence is not all hardware.....



	·	r1	·	·	·	r
HBM		memkind			memkind	
GPU MEM		CUDA	CUDA	РТХ	CUDA	
DRAM	C / ASM	C / ASM	С	C / ASM	C / Fortran	
NV-DIMM		pmem	pmem		pmem / pmemkind	pmem / pmemkind
LOCAL SSD					POSIX	POSIX
BURST BUFFER					DSL (e.g Datawarp)	DSL (e.g Datawarp)
Network SSD					POSIX	POSIX
DISK / PFS	POSIX / swap				POSIX / MPI-IO	POSIX
ΤΑΡΕ						TSM
CLOUD						S3
	Operating Systems	Runtimes	Systems Software	Programming Environments	Applications	Workflows

Source: Adrian Tate, Cray EMEA

Lot more work before convergence can be productive....

© 2018 Cray Inc.

CHALLENGE: DELIVERING A SEAMLESS EXPERIENCE

	Hardware	Software	Ecosystem	
	System	Function	Community Productivity	
Facility Performance	Utilization Peak vs. Sustained, Performance per \$	Application/Codes e.g. Deep Learning, Graph analytics	Domain-specific Creativity Is there an ecosystem of sustainable community (open-source) engagement that enables vertical	
System Performance	ReliabilityScalabilityFaults, MTTF, UptimeWeak and strong	Kernel/Motif e.g. DGEMM, SYRK, ReLU, inner product	Code Portability	
Multi-node Performance	System Architecture		Does a user have to rewrite code? Does vendor support code porting for novel architectures?	
Node	InterconnectProvisioningeth, InfiniBand, AriesMesos, Moab, SLURM	Programming Model e.g. MR, PGAS, GRPC	Programmability Does an end-user have to learn a new language or can they launch jobs with modern tools (e.g. notebooks)?	
Performance	Node Architecture # of xPUs+ cache + memory + network	Libraries e.g. MKL, CUDA, libSci Collectives e.g. NCCL, MPI	Does system offer tools to optimize ETL wall-time?	
Component Performance	Disk Memory xPU Latency Capacity, Latency Speed	Data Structure e.g. matrix, sequences, unstructured grids	Data Movement Does system provide ability to run multiple	
	i/o	e.g. matrix, sequences, unstructured grius	frameworks/applications on the same data?	

SUMMARY: SYSTEMS FOR THE FUTURE

- General purpose flexibility
 - Commodity-like configurations with custom processors, chips
- Seamless heterogeneity
 - CPUs, GPUs, FPGAs, ASICs
- High-performance interconnects for data centers
 - MPI and TCP/IP collectives, compute on the network
- Unified software stack with micro-services
 - Programming environment for performance and productivity
- Workflow optimization
 - Match growth in compute, model-size and data with I/O

THANK YOU

QUESTIONS?

in