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SAFE HARBOR
STATEMENT

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements that
are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time concerning
factors that could affect the Company and
these forward-looking statements.

© 2018 Cray Inc.




ARCHITECTING A CONVERGENT SYSTEM cRas

Model Model Value
Development Implementation Creation

Data Generation Data Preparation

Levels of Architectural Maturity Towards Convergence

* Level 1: Can a system run HPC, Big Data and Al applications/workloads?

* Level 2: Can a system execute a “convergent workflow” consisting of HPC, Big
Data and Al tools, codes and frameworks in reasonable time?

* Level 3: Can a system accelerate/scale the workflow when required?
* Level 4: Given a workflow, is this the top “performant” system one can build?

© 2018 Cray Inc.



THE CHALLENGE OF ARCHITECTING HPC SYSTEMS cRas

* Design specifications

« maximize(performance-per-$)

minimize($-to-insight)

maximize(architected performance * community productivity) <= budget

minimum(benchmark-performance) >= scaling factor

maximum(app-to-app performance variation) <= epsilon

minimize(operating costs ~ power, downtime, human resources)

* Figures-of-merit
 FLOPS, Programmability, Utilization, Benchmark, Scientific Innovation, ...

© 2018 Cray Inc. 4



THE CHALLENGE OF ARCHITECTING BIG-DATA SYSTEMS =~~~

* Design specifications
« maximize(ROIl-per-byte)

maximize(capacity * consistency * availability * fault-tolerance)

maximize(open-source tool support)

minimize(time-to-prototype + time-to-production)

minimize(security risk)

minimize(operating costs ~ power, downtime, human resources)

* Figures-of-merit
« ROI, Elasticity, Multi-tenancy, Ease-of-use, Time-to-accuracy,...

© 2018 Cray Inc. 5



TODAY: IT IS THE TALE OF TWO ECOSYSTEMS cRas

Mahout, R and Applications ‘ Applications and Community Codes | Pe rforma nce

Application Level

I
I
1
|
: % . Hivel < || sq0op |[ Fiume : FORTRAN, C, C++ and IDEs Languages and tools
' o]
: > I : L
:05 % Map-Reduce Storm . I Domain-specific Libraries gzgusé
la : <
'= [} o] 0 I (e.g., .
a8 Hbase BigTable S| 1 | MPLOpenMP |0 mpy | Programming models
@1 |a CUDA/OpenCL )
:nniddleware& ig: g e :
anagement e PFS Batch System i
8112 || HOFs (Hadoop Fite system) || (e Lustre) || Scheduler || Monioring | ACCESS policy
3 ! g
L
13 |
I ittt ittt |
'&3 | VMs, Containers and Cloud Services : Resource manager
: L} lecee e .
System Software 1 | I and JOb-SChEdUllng
] .
) I
I L3 [ ]
Ethernet | [ Local Node | [Commodity | | !B*Enet || SAN+Local || x86+GPUsor | Architectural differences
Cluster Hardware Switches Storage X86Racks | | LSwitches || Storage Accelerators
Data Analﬁics Ecoszstem " Computational Science Ecoszstem

J. Dongarra et al., Exascale computing and Big Data: The next frontier, ACM Communications 2015

© 2018 Cray Inc.



REQUIREMENTS

: MODE OF OPERATION

Scientific Computing

CRANY

Enterprise Computing

Primarily used for

Solving equations

Search/Query, Machine learning

Philosophy

Send data to compute

Send compute to data

Efficiency via

Parallelism

Distribution

Scaling expectation

Strong (scale-up)

Weak (scale-out)

Programming model

MPI, OpenMP, etc.

Map-reduce, SPMD, etc.

Popular languages

FORTRAN, C++, Python

Java, Scala, Python, R

Design strength

Multi-node communication
using an interconnect

Built-in job fault tolerance over
Ethernet

Access model

On-premise

Cloud-like

Preferred algebra

Dense Linear

Set-theoretic / Relational

Memory access

Predictable

Random

Storage

Centralized, POSIX/RAID

Decentralized, Duplication

© 2018 Cray Inc.




REQUIREMENTS : WORKFLOWS + WORKLOAD cRas

Data (Structured) Vector, Matrix, Tensor Table, Key-Values, Objects
Data (Unstructured) Mesh, Images (Physics-based) Documents, Images (Camera)
Visualization Voxel, Surface, Point Clouds \'I/'\c/fc))rl(sj Clowl, [Ferelle] Coeilnzits, [
Validation CrOfss.-vaIid.atic.)p (ROC  curves, Mar_lual / Subject matter expert, A/B
statistical significance) testing
Fourier, Wavelet, Laplace, etc. File-format transformations
24Uty Ul i, e Cartesian, Radial, Toroidal, etc. e.g. CSV to VRML
Properties such as periodicity, self- SQL, SPARQL, etc.
Search (Query) similarity, anomaly, etc. (Sum, Average, Group by)
: Non-profit grand challenge Value-driven
Funding Model (Answer matters) (Cost matters)

Sukumar, S. R,, et al., (2016, December). Kernels for scalable data analysis in science: Towards an architecture-
© 2018 Cray Inc. portable future. In the Proc. Of the 2016 IEEE International Conference on Big Data, pp. 1026-1031.



REQUIREMENTS: PROCESS AND DEPLOYMENT cmas

Scientific Computing Enterprise Computing

Model Domain-specific CNN, RNN, LSTM, GAN etc.
Baseline Theoretlg Humans, Other ML algorithms

e.g. Navier Stokes
Parallelism Model, Ensemble Data

Computational Steering Speech, Test Image interpretation
Use Case 2

Proxy models Hyper-personalization
Source File System Lustre and GPFS HDFS, S3, NFS etc.
Figure of Merit Interpretability, Feasibility Time-to-accuracy, Model-size

O(GBs) per sample, 0O(103) O(KBs) per sample, O(108) samples,

fanaibats samples, O(10) categories O(10%) categories

Data Model HDF5, NETCDF Relational, Document, Key-Value

© 2018 Cray Inc.



REQUIREMENTS: USER EXPERIENCE e

Scientific Computing Enterprise Computing
Programming Vendor libraries and compilers Open-source services and APIs
Preferred Deployment Bare metal Virtualized, Containers
Popular Architecture Homogenous Heterogenous
“Systems” Literacy High Low
Scheduling Batch Interactive, Persistent
Resource Managers SLURM, SGE, etc. Mesos, Kubernetes, etc.
Data in Files Databases (in-memory, schema)
Software Write-once Run-many Write-Many Run-Many
Access Interface Terminal, SSH Jupyter, Web-based IDEs

© 2018 Cray Inc.
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CONVERGENCE HEADLINES: BIG DATA + Al cRas

MILESTONES IN ARTIFICIAL INTELLIGENCE

CHESS SELF-DRIVING JEOPARDY IMAGENET GO
IBM’'s  Supercomputer Stanley completes 132- IBM Watson wins | Computers better Google’s Alpha Go
Deep Blue defeats mile course through on Jeopardy! than humans at beats a Go! world
Garry Kasparov . Mojave Desert recognizing images champion
7] -
o -
o o
N N
o
@ ~ @
< 0 Ty O
o (o2 o o
(o)) (o] o o
- - N N
AMAZON GOOGLE FACEBOOK YOUTUBE SPOTIFY
Books Search Image Video Audio
> 1200 PBs > 500 TBs/day > 400 PBs >42 PBs

GROWTH IN UNSTRUCTURED BIG DATA
© 2018 Cray Inc.



HPC-SCALE REQUIREMENTS AT Al PRACTITIONERS =R

Source: NVIDIA-ces-2016-press-conference

ALEXNET TO ALPHAGO ZERO: A 300,000x INCREASE IN COMPUTE
IMAGENET
Accuracy Rate 10,000
100%
#Traditional CV ® Deep Learning 8 1000 ¢ AlphaGo Zero
90% {7 ! 1 e AlphaZero
B }l i ; LJ 100 e Neural Machine Translation
80% | | | ? e Neural Architecture Search
. c 10
0% ° : ! 0 £ « Xception ® T17 Dota 1v1
¢ 3 3 £
o
60% ‘ ¢ e © VGG e DeepSpeech2
: e 9 | ®Se(2Seq e ResNets
50% o o
e ¢ = * GoogleNet
40% ’ Rad r ) o AlexNet ® Visualizing and Understanding Conv Nets
: o e Dropout
164 152 Layers OO]
30% . K|
P T T 00
73 & - ) 1
20% - W 2m
‘I.SVK: 12_ ) ;SJRCiS LSVRlCM L;!H IISEIS I.Szﬁ ® DQN
AlexNet - VGGNet GooglLeNet ResNet Ensemble . O O O O ‘]
10% IMAGENET image Claseifcation Top-5 Error(k) 2013 2014 2015 2016 2017 2018 2019
0% Year
2010 2011 2012 2013 2014 2015

© 2018 Cray Inc.



BENEFITS OF HPC ADOPTION P
Graph Analytics Matrix Methods Deep Learning

Get 2-26x over Big Data Frameworks
like Hadoop, Spark (for the same
cluster-size)

Handle 1000x bigger datasets with a

100x better speed-up with queries 95%+ sc.alfablllfy efficiency that can
reduce training time from days to hours

Best practices:

e Application fine-tuning / Performance optimization
e High-performance interconnect

e Algorithmic cleverness to trade compute and i/o

e Overlap compute and i/o with programming model

© 2018 Cray Inc.



HPC BUILDS THE MODELS OF TOMORROW
MORE DATA, BIGGER MODELS, NEED FOR MORE EFFICIENT AND PRODUCTIVE HARDWARE

Figures-of-merit

State-of-practice

CRANY

Projected 1-2 years ahead

(based on AlexNet-2012 and ResNet-2015)

Training-time to best accuracy 5+ days 2+ hours

Model Cost / TB (AWS GPUs) ~$25K ~10K
(ResNet training on 80 GPUs for 5 days)

Hardware Efficiency Network Depth: Flops::20x: 16x O(Teraflops) / problem
(based on AlexNet-2012 and ResNet-2015)

Statistical Efficiency Depth: Accuracy:: 20x:13+ O(Teraflops) / problem

Need for compute as data
grows

Data: Flops: Error:: 2x: 5x: 3+
(based on DeepSpeech1 and DeepSpeech?2)

O(Petaflops) / problem

Training Cadence

~ Monthly

~ Daily

# of models per organization

1x

10-100x

© 2018 Cray Inc.
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DIFFERENT SHAPES OF SCIENTIFIC DATA

Points

Mesh

Lines _ °

Geospatial Data

Boreholes

75

e,

» 2R
A

Hydrology

Landcover

© 2018 Cray Inc.

Time series
00000000

3\*

Molecular Data Omics Data
Molecular
# 0l0I
homology
1000
0l0|
1101
o011
Sequences
Streaming Data Graph Data

Associations

CcCRANY

2D, 3D, 4D volumes, Higher precision (32, 64 bit), Higher #
channels (3, 16, 1024), Sparse + Dense, Resolution



DIFFERENT SEARCH SPACES OF SCIENTIFIC DATA

Feature-based

Function-based

fx, ¥...,2) =0

Structured Data

Feature-space is ill-posed

Search is well-defined

© 2018 Cray Inc.

Unstructured Data
Feature-space is theoretical
Search is empirical

CcCRANY

Pattern-based

%A |lg A
SO || A ®
® p D/H
A A|C 04
O A O

Semi-Structured Data

Feature-space to be discovered

Search is P or NP-hard

Opportunity to create the "models of tomorrow”



MODELS EXPLORE AUTO-ENGINEERED FEATURE SPACES ___..

)

Path towards explain-ability

Simulation
DQN DDPG

Reinforcement Learning
Generative Models 3D-GAN

ConditionalGAN CoupledGAN SEGAN MedGAN

Before 2012 2012 2013 2014 2015 2016 2017 2018 2019

© 2018 Cray Inc. 19



Al ADOPTION IS INCREASING IN THE SCIENCES cRas

© 2018 Cray Inc.
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Domain-Specific Models Combinatorial Patterns

Fluid Dynamics Search for meta-stable states
Schrodinger Equation Search for particles
Full-Wave Inversion Search for N-way correlations

Integration with user-facilities Search in a high-dimensional feature
space

Emerging

Use-cases

Model Repurposing Workflows and Automation

Deep Learning for X « Smarter initialization for simulations
Feature engineering « Computational steering

Predictive modeling » Hybrid models of theory and Al
Hypothesis creation with interpretation

Computational Complexity ‘



CONVERGENCE HEADLINES: Al @ HPC CENTERS

1708.05256v1 [cs.PF] 17 Aug 2017

arxXiv

Deep Learning at 15PF:

Semi-Supervised Classification for Scientific Data

Thorsten Kurth*, Jian Zhang!, Nadathur Satish?, Ioannis M1t]1agkasT Evan Racah* Mostofa Ali
Patwary?, Tareq Malas§ Narayanan Sundaram?, Wahid Bhimji*, Mik ——
Mikhail Shlryaev"', Srinivas Sndhara.n”, Prabhat™,

Abstract—This paper presents the first, 15-PetaFLOP
Deep Learning system for solving scientific pattern clas-
sification problems on contemporary HPC architectures.
We develop supervised convolutional architectures for
discriminating signals in high-energy physics data as
well as semi-supervised ar for localizing and
classifying extreme weather in climate data. Our Intelcaffe-
based implementation obtains ~2TFLOP/s on a single Cori
l’hase-II Xeon-Phi node. We use a hyhml strategy employ-

while chr

first.

hitect

poised to have a nf
there are unique d

The primary chg
tities of complex,
Deep Learning im|
verge on O(10) ¢
datasets are TBs-
contain dozens of d

Supervised and

Lawrence Berkeley National Laboratory

Exascale Deep Learning for Climate Analytics

Thorsten Kurth

Berkeley, CA 94720. USA
— —

Sean Treichler
NVIDIA

Santa Clara. CA 95051

s =

CcCRANY

USA Learning

Lubor Ladicky*
ETH Zurich

SoHyeon Jeong* T
ETH Zurich

doi:10.1038/nature21056

Dermatologist-level classification of skin cancer
with deep neural networks

Andre Esteva'*, Brett Kuprel'*, Roberto A. Novoa®”, Justin Ko?, Susan M. Swetter®*, Helen M. Blau® & Sebastian Thrun®

Skin cancer, the most common human malignancy'~, is primarily
diagnosed visually, beginning with an initial clinical screening
and followed potentially by dermoscopic analysis, a biopsy and
histopathological examination. Automated classification of skin
lesions using images is a challenging task owing to the fine-grained
variability in the appearance of skin lesions. Deep convolutional
neural networks (CNNs)** show potential for general and highly
variable tasks across many fine-grained object categories®

Here we demonstrate classification of skin lesions using a single
CNN, trained end-to-end from images directly, using only pixels
and disease labels as inputs. We train a CNN using a dataset of
129,450 clinical images—two orders of magnitude larger than
previous datasets'’—consisting of 2,032 different diseases. We
test its performance against 21 board-certified dermatologists on
biopsy-proven clinical images with two critical binary classification
use cases: keratinocyte carcinomas versus benign seborrheic
keratoses; and malignant melanomas versus benign nevi. The first
case represents the identification of the most common cancers, the
second represents the identification of the deadliest skin cancer.
The CNN achieves performance on par with all tested experts
across both tasks, demonstrating an artificial intelligence capable
of classifying skin cancer with a level of competence comparable to
dermatologists. Qutfitted with deep neural networks, mobile devices
can potentially extend the reach of dermatologists outside of the
clinic. It is projected that 6.3 billion smartphone subscriptions will

© 2018 Cray Inc.

images (for example, smartphone images) exhibit variability in factors
such as zoom, angle and lighting, making classification substantially
more challenging™*!. We overcome this challenge by using a data-
driven approach—1.41 million pre-training and training images
make classification robust to photographic variability. Many previous
techniques require extensive preprocessing, lesion segmentation and
extraction of domain-specific visual features before classification. By
contrast, our system requires no hand-crafted features; it is trained
end-to-end directly from image labels and raw pixels, with a single
network for both photographic and dermoscopic images. The existing
body of work uses small datasets of typically less than a thousand
images of skin lesions'®!®!%, which, as a result, do not generalize well
to new images. We demonstrate generalizable classification with a new
dermatologist-labelled dataset of 129,450 clinical images, including
3,374 dermoscopy images.

Deep learning algorithms, powered by advances in computation
and very large datasets®”, have recently been shown to exceed human
performance in visual tasks such as playing Atari games®, strategic
board games like Go*” and object recognition®. In this paper we
outline the development of a CNN that matches the performance of
dermatologists at three key diagnostic tasks: melanoma classification,
melanoma classification using dermoscopy and carcinoma
classification. We restrict the comparisons to image- bascd classification.

We utilize 2 GoogleNet Inception v3 CNN architecture” that was pre-
trained on approximately 1.28 million images (1,000 object categories

Barbara Solenthaler’

ETH Zurich

Data-driven Fluid Simulations using Regression Forests

Markus Gross'
ETH Zurich
Disney Research Zurich

Marc Pollefeys’
ETH Zurich

capable of simulating millions of particles in realtime. Our promisin

USA -
4 Argonne Leadership Comp

Fast and Accurate Modeling of Molecular Atomization Energies with Machine

Matthias Rupp,’+? Alexandre Tkatchenko,*? Klaus-Robert Miiller,':?
*Machine Learning Croup, Technical University of Berlin, Franklinstr 28/29, 10587 Berlin, Cermany
*Institute of Pure and Applied Mathematics, University of California Los Angeles, Los Angeles, CA 90095, USA
?Fritz-Haber-Institut der Ma.'r Planck-Gesellschaft, 14195 Berlin, Germany

and O. Anatole von Lilienfeld* -f]

Facility, / Nat: | Lab
(Daled September 14, 2011)

ratory

JUSA

yields a mean absolute error of ~10 keal /mol.
molecular atomization potential energy curves.

Sep 2011

_aborg

SA Solving the Schridinger equation (SE), H¥ = EV, for

assemblies of atoms is a fundamental problem in quantum
3 ctup

"

|

hysics-based simulations in time-critical settings, where runj

1 Introduction

Cc ing high-resolution fluid si with traditior
of-the-art approaches is very challenging, as they require|
dous computational resources to compute a scene with mi
particles. The main bottleneck is the severe restriction on
step size needed to guarantee stability, and thus simulatig
are typlcally in the range of hours to days on high-end co|
making it impossible to achieve high n fluids in rq

The standard Smoothed Particle Hydrodynamics [Luc|
(SPH) method approximates continuous quantities in the
Stokes differential equations using discrete particles with 3
ate smoothing kernel and replaces a continuous advectid
advection of particles. The approach does not deal with the
pressibility constraint directly, which causes significant visi
pleasant artifacts.

Recent work has addressed this problem and either enford
sity invariance condition or a divergence-free velocity
predictive-corrective scheme has been introduced where
values are iteratively updated to satisfy the zero compress|

Hierarchical attention networks for information extraction
from cancer pathology reports

Shang Gao,' Michael T Young," John X Qiu," Hong-Jun Yoon," James B Christian,’
Paul A Fearn,? Georgia D Tourassi,"* and Arvind Ramanthan'*

'Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA and *Surveillance
Informatics Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
“Corresponding Author: Arvind R han, C ional Sci and Ei Division, Health Data Sciences In-
stitute, Oak Ridge National Laboratory, MS-6085, One Bethel Valley Road, Oak Ridge, TN 37831-6085, USA. Email: ramana-
thana@ornl.gov. Phone: 865-576-7266. Fax: 865-241-0337

Received 12 June 2017; Revised 10 October 2017; Editorial Decision 15 October 2017; Accepted 26 October 2017

ABSTRACT

Objective: We explored how a deep learning (DL) approach based on hierarchical attention networks (HANs)
can improve model performance for multiple information extraction tasks from unstructured cancer pathology
reports compared to conventional methods that do not sufficiently capture syntactic and semantic contexts
from free-text documents.

and Methods: Data for our analyses were obtained from 942 deidentified pathology reports collected

straint [Solenthaler and Pajarola 2009]. The per

further improved by discretizing and iteratively solving
sure Poisson equation [Thmsen et al. 2013]. Most recently}
tion based fluid (PBF) approach has been presented [Mad]
Mueller 2013], where first all particles are advected, and {
jected to the manifold of feasible solutions by iteratively
ing positions of particles to satisfy the incompressibility cd
PBF allows to use a larger time step compared to its counter
density invariance condition has also been combined with|
scale scheme [Horvath and Solenthaler 2013] to further
the computation. Despite all these improvements, high-rg
fluids are still computed offline.

An alternative to particle-based approaches are grid-basg
ods that approximate continuous quantities on a discretq
grid [Enright et al. 2002]. Incompressibility is enforceg
grid by solving the Poisson’s equation, making the velog
divergence-free. To speed up grid-based simulations, the

space can be restricted to simpler topology [Chentanez an
2010: Chentanez and Miiller 2011]. To avoid discretization|

of grid-based methods, the hybrid FLIP model [Zhu and §

by the National Cancer Institute Surveillance, Epidemiology, and End Results program. The HAN was imple-
mented for 2 information extraction tasks: (1) primary site, matched to 12 International Classification of Dis-
eases for Oncology topography codes (7 breast, 5 lung primary sites), and (2) histological grade classification,
matched to G1-G4. Model performance metrics were compared to conventional machine learning (ML)
approaches including naive Bayes, logistic regression, support vector machine, random forest, and extreme
gradient boosting, and other DL models, including a recurrent neural network (RNN), a recurrent neural network
with attention (RNN w/A), and a convolutional neural network.

Results: Our results demonstrate that for both information tasks, HAN performed significantly better compared
to the conventional ML and DL techniques. In particular, across the 2 tasks, the mean micro and macro F-scores
for the HAN with pretraining were (0.852,0.708), compared to naive Bayes (0.518, 0.213), logistic regression
(0.682, 0.453), support vector machine (0.634, 0.434), random forest (0.698, 0.508), extreme gradient boosting
(0.696, 0.522), RNN (0.505, 0.301), RNN w/A (0.637, 0.471), and convolutional neural network (0.714, 0.460).
Conclusions: HAN-based DL models show promise in information abstraction tasks within unstructured clinical
pathology reports.

Key words: clinical pathology reports, information retrieval, recurrent neural nets, attention networks, classification

y, Argonne, Illinois 60439, USA

h We introduce a machine learning model to predict atomization energies of a diverse set of organic
molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular
Schrédinger equation is mapped onto a non-linear statistical regression problem of reduced complex-
ity. Regression models are trained on and compared to atomization energies computed with hybrid
density-functional theory. Cross-validation over more than seven thousand small organic molecules
Applicability is demonstrated for the prediction of

ory (DFT) level [21[T3, [[4], any other training set or level
of theory could be used as a startmg point for subsequem
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#1: COMPUTING AT SCIENTIFIC FACILITIES SR

State-of-the-art: Took 3000 collaborators nearly 10 years to build

Saves compute cycles....

confusion ma trix

CYWETA 1.90% 0.04% 3.81% s
1.27% 0.82% 7.21% 06
04

B 6.82% 4.5% [LRLVA 5.68%

iR 15.41% 24.95% 13.95% 45.68%

) o
FEATURE LEARNING CLASSIFICATION & &

© 2018 Cray Inc. Convergence saves ’flops” )



#2: DISTRIBUTED TRAINING OF Al/ML CODES

State-of-the-art: Takes 6+days to train a model

CNTK (Original) ResNet-152 on ImageNet
XC50+ P100

Samples/Second e Before

20000

18000

16000

14000

12000
10000
8000
6000
4000
2000 l
,

64x1024 128x2048 256x4096 512x8192 1024x16384 2048x32768
GPUs x Global Minibatch Size

Samples/Second

CNTK (Cray-Collectives) ResNet-152 on ImageNet
XC50+ P100
o After

Samples/Second

- 14000
c
S 12000
@
& 10000
=
a
2 8000
Iy}
6000
4p00
| I
0

64x1024 128x2048 256x40%6 512x8192 1024x16384 2048x32768
GPUs x Global Minibatch Size

Convergence “trains” in minutes

XC and IB 8x Nodes Relative Performance (Alexnet)

180000
160000

samples / sec

140000
120000
100000
80000
60000
40000

20000

Samples/sec (aggregate)

- e N Extrapolated

il 4T Measured

— ense Node |B Exrapolated

o &

131072.00
32768.00
8192.00
2048.00
512.00
128.00

32.00

32

—o— \VIBS=4
—8— \BS=16

—— \|BS=64

1.25x

128

Processors
Inception v3 Performance on XC50

—e— |VIBS=8
—8— MBS=32
= = =200xN

16
Nodes (GPUs)

© 2018 Cray Inc. S.R. Sukumar et al., in the Proceedings of the NIPS Workshop on Deep Learning at Supercomputing scale, 2017

64

2.06x
’

512

256

CcCRANY



#3: INTERACTIVE ANALYSIS OF BIG DATA

P
State-of-the-art: Exploratory data analysis is not interactive =
e Cori @ NERSC
e 1630 compute nodes Science Format/Files Dimensions Size
e Memory: 128 GB/node, Area
e 32 2.3GHz Haswell cores/node MSI Parquet /2880 8,258,911 x 131,048 1.1TB
Gittens, Alex, et al. "Matrix factorizations at scale: A comparison Daya Ba}’ HDF5/1 ]-s 099: 413, 914 X 192 16TB
of stcizr\tifi“c dlzt:Ealn?Iytic:_in sr})acrk and C+ MPIBL.lsigg :hrzeglc;se Ocean HDF5/1 6, 349, 676 X 46, 715 2.2TB
stuclies-", [EEE Internationet conference en Big bate.2016. Atmosphere HDF5/1 26,542,080 x 81,600 16TB
Convergence enables
“iterative discovery'INodes / cores MPI Time Spark Time | Gap
50/ 1,600 Tminés 4 min 38 s
NMF [|100/ 3,200 45 s 3min 27 s
300/ 9,600 30s 70 s
PCA 100/ 3,200 1 min 34 s 15min 34 s
22 300/ 9,600 1 min 13 min 47 s
(2.2TB) | [500 /16,000 56 s 19 min 20 s
PCA ||MPI: 1,600/ 51,200 : .
e 1 (16TB) | |Spark: 1,522 748,704| 2™Mn40s | 69min3Ss -




#4: HYBRID THEORY+AI MODELS

State-of-the-art: Works when manually-tuned

Advanced

Algorithms Data Improved
Science Velocity

Expertise Models

and
Software
Frameworks

in||[F(m)-d| +A(|©V(m-m)|,+ [ P*V(m-
m"}nu (m) |'| + (”l (m m,)lL+fQl (m m‘,))

L=3 | I T
data misfit weighted TV Steerable Variation
L=2
Resolution

L=1
1 [+oo DI, 1 [+ M,
> L=0 d.(DI||M) = — DI. log| —|dx + — M. log| —|dx

Js( || ) 2 ﬁ i Og[ M,‘] + 5 e i Og[DIi]

(c) Integrated small- and large-scale pores

© 2018 Cray Inc.



#4: HYBRID THEORY+AI MODELS cmas

W LR e | |l g
s . SN s » =

“Ground truth” Benchmark

Synthetic benchmark with known
subsurface geometry and seismic
reflection data.

Conventional FWI attempts to derive a
more accurate velocity model.

FWI with Machine Learning

— Using machine learning (regularization
_ and steering) to guide the convergence

process.

Convergence enables “higher fidelity” to reality

© 2018 Cray Inc.
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TRENDS AND CHALLENGES



TREND: MULTI-MODEL DATA

cRAaNY
INCREASING SPATIAL, TEMPORAL AND SPECTRAL RESOLUTION

Transactional Conversational Genomics Graphs

Documents Ima'g'e\s 3D Point clouds Sensors

© 2018 Cray Inc.



CHALLENGE: I/O PATTERNS OF HPO LESS STUDIED
HYPERPARAMETER OPTIMIZATION CRITICAL FOR MULTI-MODEL DATA

Average Populat'ion Member
Best Population Member

RANY

LeNet-5 Convolutional Deep Neural Network on MNIST

1 | I I I |
Shift Left: Reduce Time to Accuracy

100 f

Perplexity (Test Set, Lower is Better, Log Scale)

0.99
>
|9
o
=
|9
2 1 I2 .3 ;1 5
c 0.98 . NN Training Epo.ch
S Learning the optimal topology
©
T
% Learning Rate Schedule
> NMT NN - English to Vietnamese
0.97 2
Original 5 !
| Evolved —— 2
Fully Trained (99.3%) - £0e
0.96 1 1 1 1 1 S
0 10 20 30 40 50 60 2

Training Time (Seconds)
Source: Aaron Vose, Cray Performance Team

Leamir
L=

5 B 9
Training Epoch

©2018 Cray Inc. Learning a “learning-rate” schedule



CcCRANY

TREND : PROLIFERATION OF APPLIANCES

it '

Massively parallel processing databases Distributed Analytics on Storage Distributed-memory Analytics
@ Greenplum G hERRED M ‘ @
: Neo4j 2 MATLAB
' < Z Spark

Sp ark MLIib § SAS e

Toolbox

PostgreSQL .
mongoDB

“Algorithm is made to work on

Analytics is retrieval Take compute to cheap storage distributed memory-chunks”

... SOLVES THE COMPUTE PROBLEM BUT CREATES NEW I/O PROBLEMS.

© 2018 Cray Inc.



CHALLENGE: NEED A SMARTER INTERCONNECT
THE DATA MOVEMENT, MANAGEMENT AND /O PATTERNS...

!
Mahout, R and Applications I ‘ Applications and Community Codes ‘
I

cCcRANY

Application Level

High-performance Interconnect

|
Ethernet Local Node | | Commodity | IB+Enet || SAN+Local || x86+GPUsor
Cluster Hardware Switches Storage X86 Racks I Switches Storage Accelerators
Data Analytics Ecosystem " Com putational Science Ecosystem

J. Dongarra et al., Exascale computing and Big Data: The next frontier, ACM Communications 2015

©2018 Cray Inc. ..WILL NEED A SMARTER INTERCONNECT.



TREND: SOFTWARE TRICKS OUTPERFORMING HARDWARE

CcCRANY

Roofline analysis ResNet-50 Success Time-to- How many Scalability
15000 accuracy GPUs? Efficiency
Source: NVIDIA L
) Facebook (Caffe2) 2 days 352 GPUs 90%
i 1 hour 256 (large-batch)
; IBM PowerAl 50 minutes 256 GPUs 95%
2 (Caffe) (large-batch)
Google ~24 hours 64 TPUs >90%
(TensorFlow)
Training only Images/s Preferred Networks 15 minutes 1000 GPUs >90%
Small Data Power-law Region Irreéjucible (Chainer)
T Region e"iC:)rn )
S | sestuesseror | | e Cray @ CSCS <14 minutes 1000 GPUs ~>95%
g ~ (Tensorflow)
“2 Tencent <7 minutes 2048 GPUs Large batch @
g 64K
| |SouceBaidu | | Fast.aion AWS ~18 minutes 128 GPUs  Not available
Irreducible Error (Cost: $40) (Iarge batch)

Training Data Set Size (Log-scale)

© 2018 Cray Inc.



CHALLENGE: SOFTWARE FOR NEW HARDWARE

CcCRANY
e Software : 7-10x improvement in e Hardware: 10-1000x in 2 years*
time-to-accuracy in 1 year on CNNs e Training
Intel, AMD, ARM, NVIDIA
? ® J J J
Method Who* e Google TPU v2
LARS (MBS — 32K) NVIDIA e Cerebras
Learning Rate schedule (~64K) Facebook e Graphcore
e Habana
Gradient Clipping Microsoft e 30+ startups....
Mixed Precision Training Baidu _
— _ o Inferencing
Op}t(mlll'i(e:r Tuning (~32K) Soogle i e Intel Nervana
- K- esearc :
- Neumann (now part of » Wave Computing

TensorFlow) * Grog

Batch Normalization Google

© 2018 Cray Inc.



TREND: TRIGGERED TRAINING

CRANY

TRAINING PATTERNS DETERMINE SUPPORTING INFRASTRUCTURE FOR STORAGE AND 1/0O

Training

Use-case

Data size growth

in unit time

Time to quality
metric today

# of xPUs

Continuous Internet-of-things 1:1 O(minutes) O(10)
Cadence Uber Eats prediction n:1 (n>>1) O(days) O(10)
Delta Speech (rare words) n:1 (n~1) O(days) O(1)
One-time Lower-order  physics 44 440p.4 O(weeks) O(100+)
approximations
Speech and speaker .
Throughput detection 1:# of users O(days) O(100+)

© 2018 Cray Inc.



CHALLENGE: POTENTIAL OFF-NODE I/0 REQUIREMENT

CRANY
Other Nodes
NFS Client '
w/CacheFS
EDR IB
NAS (NetApp) \
gz:lﬁln T 5 — Possible 1GB/s
FromData ~_ =~ (g g e (future 8GBIs)
Sources 10GbE c S| | Fromlocal SSD
~UEHEIE ?GbE 5]1C ;G.:
4 14 4 C E G G
FIlFIlF S islonles
4 7 4 > G G
~_ __“Stage N
2GB/s N\
\_2TB SSD

‘ RAID5 (write b/w ~half)

© 2018 Cray Inc.



TREND: MULTI-TOOL WORKFLOWS ARE THE NORM

cRAaNyY
limiting resource
#1O channels Optimized for components but
1/0 Limiting resource not the end-to-end workflow
parallel ( # memory channels )
Time to solution
Job; Job, :1> Joby, :1>
(Clustering) (Graph Analytics) (Deep Learning)
“Datafom
' Database 2

Time to insight

© 2018 Cray Inc.



CHALLENGE: FUTURE PARALLELISM cmas

Data-Parallelism Model-Parallelism Ensemble-Parallelism

2»& 2»& Bool

Yo u —{LICRL..
=0t =0 zom TOE
i i 2»@*@;5

—1{CH =7
i»®/ Shared i»®/ E =0 "

Data  Workers States Shared Workers Partitioned e
Partitions Data artitione
Model

* Model-Parallelism (Training, Inferencing)

* Higher Resolution Images
 Intra-node vs. Inter-node bandwidth

© 2018 Cray Inc.



TREND: CONVERGED HARDWARE+SOFTWARE cRas

Scalable simulation &
modelling, analytics, and Al

© 2018 Cray Inc.

(==

URIKA-CS

CRANY Y CS-STORM CS-STORM

Cs500 500NX 500GT

MLIib,Spark
SQL, Spark
Streaming,

GraphX

BigDL

Apache Spark™

URIKA-XC

Flexibility with
heterogeneity

CcCRANY

CRANY

XC SERIES

Cloud-like

[ ] [ [
interoperability
Uls: Jupyter Notebooks, TensorBoard
PyTorch Keras,
TensorFlow™
Anaconda
Python, pbdR Eﬁ:;ﬁ f(gg';)

Dask

Distributed Training Framework
Horovod, CrayPE ML Plugin

Intel® MKL, Intel MKL-DNN, Cray MPI



CHALLENGE: CONVERGENCE REQUIRES WORK

CRANY
Convergence is not all hardware.....
Workflows HBM memkind memkind
Applications GPU MEM CUDA CUDA PTX CUDA
DRAM C/ASM C/ASM C C/ASM C/ Fortran

pmem / pmem /
Runtime Systems NV-DIMM pmem pmem pmemkind pmemkind

POSIX POSIX
Systems Software

DSL (e.g DSL (e.g
Workflow TOOlS BURST BUFFER Datawzrp) Datawarp)
High-Jovel Network SSD POSIX POSIX
Sl Execution Framework
Middleware L DINAL POSIX / swap POSIX / MPI-IO POSIX
TAPE TSM
Core MADA Core Data Model CLOUD .
Middleware WPS
Memory System Model .
Operating . Programming .
Low-level Svst Runtimes Environmente | APPlications § Workflows
Middleware _ Memory Storage Integration WP5 VI

Source: Adrian Tate, Cray EMEA

Lot more work before convergence can be productive....

© 2018 Cray Inc.



CHALLENGE: DELIVERING A SEAMLESS EXPERIENCE

Facility
Performance

System
Performance

Multi-node
Performance

Node
Performance

Component
Performance

© 2018 Cray Inc.

Hardware

Utilization
Peak vs. Sustained, Performance per $
Reliability  Scalability

Faults, MTTF, Uptime Weak and strong

System Architecture

Interconnect
eth, InfiniBand, Aries

Provisioning
Mesos, Moab, SLUR

Node Architecture

# of xPUs+ cache + memory + network

M

Disk Memory xPU
Latency Capacity, Latency Speed
< >

ilo

Software

m Community Productivity

Application/Codes

e.g. Deep Learning, Graph analytics

Kernel/Motif

e.g. DGEMM, SYRK, ReLU, inner product

Ecosystem

Domain-specific Creativity
Is there an ecosystem of sustainable community

(open-source) engagement that enables vertical
segments?

CRANY

Programming Model
e.g. MR, PGAS, GRPC

Code Portability

Does a user have to rewrite code? Does vendor
support code porting for novel architectures?

Collectives

e.g. NCCL, MPI

Libraries

e.g. MKL, CUDA, libSci

Programmability

Does an end-user have to learn a new language or can
they launch jobs with modern tools (e.g. notebooks)?

Data Structure

e.g. matrix, sequences, unstructured grids

Data Pre-Processing

Does system offer tools to optimize ETL wall-time?

Data Movement

Does system provide ability to run multiple
frameworks/applications on the same data?

41



SUMMARY: SYSTEMS FOR THE FUTURE

» General purpose flexibility

« Commodity-like configurations with custom processors, chips
« Seamless heterogeneity

« CPUs, GPUs, FPGAs, ASICs
 High-performance interconnects for data centers

 MPI| and TCP/IP collectives, compute on the network
 Unified software stack with micro-services

* Programming environment for performance and productivity
» Workflow optimization

« Match growth in compute, model-size and data with 1/O

© 2018 Cray Inc.
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