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Motivation

● Deep-Learning workloads are increasingly common on HPC systems

– Taking advantage of high performance system for training

– Traditional applications adopting deep-learning methods

● Deep-Learning I/O Workloads features very different characteristics comparing to 
traditional HPC applications

– Small individual read/write vs collective read/write

– Favors individual I/O

● Characterize I/O pattern being the first step for

implementing improvements



  

Typical HPC I/O vs Deep-Learning I/O

● HPC

– Larger files (limited)

– Collective I/O
● Processes sharing the same files

– Repetitive tasks
● Same data input
● e.g. iterative solvers

– Regular write
● Saving intermediate states / time steps

● Deep-Learning

– Smaller files (many)

– Individual I/O

● Files individually loaded and used by 
processes

– Repetitive tasks

● Different data input

● e.g. different sample batches

– Model saved at the end of training

● Checkpoints made regularly



  

TensorFlow Data Pipeline

● Dedicated input pipeline to prepare training samples for computation

– Dataset API

● Extensive support to different I/O systems

– POSIX

– Hadoop Distributed File System

– Google Cloud Storage

– Amazon S3

● Consumer producer model

– Network consumes training samples/batches for computation and 
optimization

– Data pipeline produces samples/batches that are ready for 
consumption

– Embarrassingly parallel problem
● File only used by one particular worker during training
● Data read from file are not shared (no collective I/O needed)



  

TensorFlow I/O Pipeline Features

● DL training needs small individual I/O 

– Solution
● tf.dataset.map()

– Executes a mapped capture function, containing I/O and transformation operations
– num_parallel_calls controls how many executions at the same time
– A number of threads that is equal to num_parallel_calls is spawn to execute the capture 

function

● tf.dataset.interleave()
– Similar to map(), but expends one entry into many items to downstream operation
– e.g. one TFRecord → many samples, one folder → samples in folder

– Similar to how parallel I/O in MPI-IO maximizes bandwidth between workers and storage targets, 
but on a thread level



  

TensorFlow I/O Pipeline Features

● DL training on GPUs requires large number of samples continuously to fill pipeline

– Training pipeline (consumer) consumes batches from I/O pipeline (producer)

– On powerful platforms speed of I/O pipeline might not catch up training pipeline

– When training pipeline triggers I/O pipeline it needs to stay idle and wait for data

– Both pipeline are executed on different devices, presents possible parallelism



  

TensorFlow I/O Pipeline Features

● DL training on GPUs requires large number of samples continuously to fill pipeline

– Solution
● Prefetch

– dataset.prefetch(1)
– Executes input pipeline in advance → data ready for consumption as soon as computation pipeline is ready
– Stores a number of ready for training batches in a host memory buffer
– As soon as number of batches in buffer goes below threshold triggers I/O pipeline again
– Exploit parallelism by utilizing CPU and GPU at the same time

● Prefetch directly to GPU
– tf.contrib.data.prefetch_to_device('/gpu:0')
– New feature in recent release
– Must be the last transformation applied in the pipeline
– Further avoid copying delay between host and GPU memory by prefetching to buffer on GPU memory



  

Checkpoint

● Save parameters between execution to disk

– tf.train.Saver()

– Three files generated
● Metadata: Description of the computation graph
● Index: Describes Tensors of a graph
● Data file: Actual data stored in variables

– Cleanup old checkpoints: only keep the latest copies



  

Checkpoint

● Checkpoint I/O traffic (and I/O from movement of training data) can be bursty

– Each checkpoint can take several hundreds of Megabytes

– TensorFlow checkpoint saver currently does not ensure data flushed to disk and does 
not support Async checkpont

– Burst-buffer
● Usually a persistent while fast storage medium
● Commonly implemented with Non-volatile memory
● Acts as an intermediary between mediums with different speed and size tradeoff
● Absorbs bursty traffic to avoid delay in application execution
● e.g. DataWarp by Cray and IME by DNN



  

Checkpoint

● Checkpoint I/O traffic (and I/O from movement of training data) can be bursty

– Solution
● Use a burst-buffer to absorb traffic
● On Linux calls syncfs() to force OS to write files to disk
● Issue a copy command as a sub-process

– This time let OS and file system decide which to perform disk write
– Ensure one copy is saved



  

Contributions

1) Show that Threading is an effective way of increasing bandwidth utilization

● Through a STREAM like benchmark

2) Prefetch is key to high performance and efficient use of devices on machine

● Through AlexNet miniapp

3) Burst buffer is essential for maintaining high performance pipeline

● Quick checkpointing without delaying next training iteration

● Data staging on burst buffer for fast ingestion (not covered by this work)



  

STREAM Benchmark

1)  Read a list of file paths and labels

2)  Shuffle list

3)  Apply capturing function for processing

1)  Individual file I/O

2)  Decode image

3)  Resize

4)  Batch

5)  Attach iterator

6) Iterator continuously invoked

7) Create a stream of inflow

● Compute images per second

● Compute MB/s



  

AlexNet Mini-app

● Input preprocessing of images

● File I/O
● Read a list of files and labels
● tf.read()

● Image decoding
● tf.image.decode_png()
● The function also decodes JPEG files

● Image resize to size 244x244
● tf.image.resize_images()

● Apply batching, prefetch and attach iterator

● Invoke optimize, draw batch, update



  

AlexNet Mini-app with Checkpoint

● Extends AlexNet mini-app with checkpointing

● Snapshots taken every defined number of iterations
● Calls tf.train.Saver() to create checkpoint files, use syncfs() to ensure checkpoint is flushed to disk where files are stored

● File systems such as ext4 saves files in memory and writes data to disk when operating system see fit

● Evaluate performance when checkpointing to different storage devices

● Proof of concept burst buffer

1)Perform checkpoint routines and use NVMe as storage with Intel Optane
● Save snapshots
● Sync to disk

2)Issue copy command to copy newly created file to slow storage in background

3)Checkpoint safely stored in NVMe storage while being swap to permanent storage in background
● Training continues



  

Evaluation

● Blackdog

– Eight core Intel Xeon E5-2609v2

– NVIDIA Quadro K4000

– 72 GB DRAM

– 4TB HDD (non-RAID)

– 250 GB SSD

– 480GB NVMe

– Ubuntu Server 16.04
● Gcc 7.3.0
● CUDA 9.2
● TensorFlow 1.10

● Tegner

– Intel E5-2690 v3 Haswell

– NVIDIA K80

– 512 GB RAM

– Lustre parallel file system

– CentOS 7.4
● Gcc 6.2.0
● CUDA 9.1
● TensorFlow 1.10



  

Storage Devices

● Hard Disk Drive (HDD)

– 4 TB (non RAID)

– IOR Read 163 MB/s, Write 133.14 MB/s

● Solid State Drive (SSD)

– Samsung 850 EVO 250 GB

– IOR Read 280.55 MB/s, Write 195.05 MB/s

● Intel Optane (Opt.)

– Intel Optane 900p 480GB on PCI-E

– IOR Read 1603.06 MB/s, 511.78 MB/s

● Lustre

– Parallel file system used by Tegner

– IOR Read 1968.618 MB/s, 991.914 MB/s

● Operating system often cashes recent files

– Passes POSIX FADV DONTNEED to 
posix_advice() for files

– # echo 1 > /proc/sys/vm/drop caches

● Only possible on Blackdog where we 
have root permission

– Only reads new file during a test, never 
read previous accessed files



  

Evaluation

● Monitor system I/O activities with dstat

– A system resources monitoring tool which produces different statistics

– Sampled every second

– Able to track different disk activity

http://dag.wiee.rs/home-made/dstat/



  

Evaluation

● Micro-benchmark

– Reads subset of ImageNet with 16,384 JPEG files with median size 112 KB

– Mainly reports batch size 64
● Iterator invoked 256 times per test to consume the whole dataset

– Vary number of threads for individual I/O to one, two, four and eight

– Tests reading performance when files are placed on:
● HDD
● SSD
● Intel Optane

– One warm-up run, repeat tests five times
● Reports median bandwidth
● MB/s
● Images/s



  

Evaluation

● Micro-benchmark

– Double bandwidth when increases threads 
from one to two

– Benefit for HDD diminishes when number of 
threads exceed four

● 2.3x improvement with eight threads

– Best bandwidth utilization by Lustre
● True parallel read from different object 

storage targets
● 7.8x improvement with eight threads

– Poor bandwidth comparing to our IOR 
benchmark results



  

Evaluation

● Micro-benchmark

– Empty input process except read

– Optane achieves best bandwidth 
as expected



  

Evaluation

● AlexNet mini-app

– Caltech 101 dataset
● Median image size 12 KB
● Executes 142 steps, batch size 64 and 

consume 9,088 images
● One epoch per test

– Varying number of threads
● Effective on performance
● Close to no effect to the SSD and Optane

– Prefetching is very effective
● Runtime becomes the same regardless of 

storage technology and number of threads 
used



  

Evaluation

● AlexNet mini-app

– Increased batch size enables 
better utilization



  

Evaluation

● AlexNet mini-app

– Prefetching results in complete overlap 
of I/O and computation

– I/O pipeline executed while computation 
of current batch is on going

– Higher reading rate when prefetch 
enabled

– Clear pattern of batch reading visible 
when prefetch not enabled

– Initial idle period as fixed cost from 
initialization and shuffling of sample list



  

Evaluation

● Checkpoint and burst buffer

– Execute 100 iterations, checkpoint every 20 iterations
● Batch size 64
● Training samples stored in SSD
● Prefetch enabled

– Each checkpoint contains ~600 MB

– Slowest checkpoint to HDD

– Lustre has best performance
● Expected result

– Checkpointing account to ~15% of execution time

– Prototype burst buffer has similar performance comparing 
to only writing to Intel Optane

● 2.6x improvement comparing to checkpointing directly 
to HDD



  

Evaluation

● Checkpoint and burst buffer

– Five checkpoints made each test

– Long duration when checkpoints 
are written and sync to HDD

– Optane effectively absorbed all the 
burst from writing checkpoints

– Files are moved to HDD in 
background for long term storage 
while training continues



  

Conclusion

● Performance of writing is a traditional I/O bottleneck

– Not anymore with DL workload!

– DL workload are small-read intensive, I/O system needs to optimize accordingly

● Traditional method of maximizing bandwidth by threading still applies

● Prefetching is key to pipeline performance optimization

– Prefetching at different level of storage hierarchy will likely become a requirement
● e.g. prefetching/staging of training samples in burst-buffer

● Using Burst-buffer is an effective way of absorbing or handling burst of I/O traffic
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