

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

I/O Mini-apps, Compression, and I/O Libraries for Physics-based Simulations
Sean Ziegeler

DoD HPCMP PETTT / Engility
sean.ziegeler@engilitycorp.com

Scot Breitenfeld
The HDF Group

brtnfld@hdfgroup.org

Jose Renteria
DoD HPCMP PETTT / Engility
jose.renteria@engilitycorp.com

Jordan Henderson
The HDF Group

jhenderson@hdfgroup.org

Compression is attractive because it is often the least
invasive data reduction method, but this advantage often comes
at the cost of both compression ratio and I/O peformance. Here,
we focus on performance. Presented is a mini-app designed, in
part, to explore the effectiveness of compression for physics-
based simulations that use I/O libraries. The DoD High
Performance Computing Modernization Program (HPCMP)
recently completed a project to create parallel I/O mini-apps:
MiniIO. It consists of four open source mini-apps that represent
major simulation types. The dedicated mini-app approach is
desirable, compared to those that extract emulation kernels from
codes, because many sets of changes and parameter settings can
be applied to the mini-app based on physics concerns and their
effects directly observed without re-extracting many kernels.

While all of the mini-apps are interesting for compression,
one of the apps, struct, is designed in part to specifically address
compression. It simulates an application with a static, structured
3D grid, 2D tiling of that grid across parallel ranks, time-variant
data values, blanked values and load balancing. A real world
example is an ocean model, where data points that are located
on land would be “blanked-out” because no computations occur.
For an equally-distributed parallel decomposition, this creates
load imbalance, but struct includes the option to load balance.
The problem for I/O in a structured grid is that blanked data
points are marked as invalid but still remain in the arrays. Thus,
the I/O becomes load-imbalanced; yet, compression could be a
solution. Since blanked points in an array can be set to a
constant value, these areas of the arrays can compress trivially,
resulting in similar-sized compressed data tiles.

With compression, one must take care how the data
structures are filled. Filling valid data points with a constant
value results in trivial compression. Filling with pseudo-random
data is also unfair, as the high apparent entropy results in poor
compression. The mini-apps include a 4D coherent noise
variable known as simplectic noise, related to the venerable
Perlin noise. The simplectic noise is also used to generate the
blanked regions and can generate Earth-like data sets, e.g., with
large continents, by adjusting the frequency of the noise.

As part of the project, parallel compression was added to the
HDF5 library. Collective operations now coordinate chunk
operations to process through parallel filters and, for writes,
collectively re-insert modified chunks as needed. HDF5 had
only tested the following compression filters in parallel: zlib,
szip, and shuffle+zlib (a bit shuffling filter inserted before zlib).
Each of these filters with HDF5 have been benchmarked and
included in the results so far.

The ADaptive I/O System (ADIOS) provides a single
interface in MPI to multiple output methods, aka., transport
layers. In this study, we examined four transport layers: POSIX,
MPI, MPI-Lustre, and MPI-Aggregate. ADIOS implements
compression through data “transformations.” As with HDF5,
zlib and szip tranformations were utilized. ADIOS does not offer
a shuffle transformation, but zfp was utilized, which has error-
bounded lossy compression.

The study explored the performance of HDF5 and ADIOS
with the struct MiniIO mini-app on a Cray XC50 system with
both Intel Broadwell and Knights Landing (KNL) cores on a
Lustre file system. Computationally unbalanced and balanced
loads were run with each combination of library output option.
Struct was set to generate approximately 65% valid data points,
based on typical global ocean models and some regional models.
Core counts ranged from 512 - 21912. Zfp compression was set
to an accuracy of 0.0001 and produced a 9x compression ratio
on average. A subset of the results so far are included in Fig. 1.

Figure 1. A sampling of compression-assisted throughput results

with two output methods on two processor types.

Perhaps the most noticeable and promising trend across all
results is compression scalability with core count. Nearly every
output type on both processors, with/without load balancing, and
compression method shows speed up with increasing cores. Zfp
compression is so scalable that it results in throughputs that are
faster than the bandwidth of the file system (about 200 GB/s).
One sees overall performance degradation on KNL, as expected
given the core counts, weak scaling being utilized, and weaker
integer computation on KNL. Computational load-balancing
indeed has a significant effect on performance. Note that for all,
the unbalanced load is faster, and in several cases significantly
faster. Compression does indeed partially fix the issue of
performance loss due to load balancing (i.e., an imbalanced I/O
load). In most cases, it outperforms an uncompressed,
unbalanced load. Future work includes further scalability testing
on Broadwell and Google Compute Engine to test the scalability
of compression on Intel Skylake cores.

-30
70

170

270

370

528 4048 8008 21912

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

(d)	Broadwell	ADIOS	MPI-Aggregate

Unbal./No	Compr. Unbal./zlib Unbal./szip Unbal./zfp

Bal./No	Compr. Bal./zlib Bal./szip Bal./zfp

0
50

100
150
200
250
300
350
400
450

528 4048 8008 21912

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

(a)	Broadwell	ADIOS	MPI-Lustre

0

20

40

60

80

100

512 4096 8192

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

(b)	KNL	ADIOS	MPI-Lustre

0

20

40

60

80

528 4048 8008

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

(c)	Broadwell	HDF5

Unbal./No	Compr. Unbal./zlib Unbal./szip Unbal./shuffle+zlib

Bal./No	Compr. Bal./zlib Bal./szip Bal./shuffle+zlib

0
10
20
30
40
50
60
70
80

528 4048 8008

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

(c)	Broadwell	HDF5

0

5

10

15

20

25

512 4096 8192

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

(d)	KNL	HDF5

