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Compression is attractive because it is often the least 
invasive data reduction method, but this advantage often comes 
at the cost of both compression ratio and I/O peformance. Here, 
we focus on performance. Presented is a mini-app designed, in 
part, to explore the effectiveness of compression for physics-
based simulations that use I/O libraries. The DoD High 
Performance Computing Modernization Program (HPCMP) 
recently completed a project to create parallel I/O mini-apps: 
MiniIO. It consists of four open source mini-apps that represent 
major simulation types. The dedicated mini-app approach is 
desirable, compared to those that extract emulation kernels from 
codes, because many sets of changes and parameter settings can 
be applied to the mini-app based on physics concerns and their 
effects directly observed without re-extracting many kernels. 

While all of the mini-apps are interesting for compression, 
one of the apps, struct, is designed in part to specifically address 
compression. It simulates an application with a static, structured 
3D grid, 2D tiling of that grid across parallel ranks, time-variant 
data values, blanked values and load balancing. A real world 
example is an ocean model, where data points that are located 
on land would be “blanked-out” because no computations occur. 
For an equally-distributed parallel decomposition, this creates 
load imbalance, but struct includes the option to load balance. 
The problem for I/O in a structured grid is that blanked data 
points are marked as invalid but still remain in the arrays.  Thus, 
the I/O becomes load-imbalanced; yet, compression could be a 
solution.  Since blanked points in an array can be set to a 
constant value, these areas of the arrays can compress trivially, 
resulting in similar-sized compressed data tiles. 

With compression, one must take care how the data 
structures are filled. Filling valid data points with a constant 
value results in trivial compression. Filling with pseudo-random 
data is also unfair, as the high apparent entropy results in poor 
compression. The mini-apps include a 4D coherent noise 
variable known as simplectic noise, related to the venerable 
Perlin noise. The simplectic noise is also used to generate the 
blanked regions and can generate Earth-like data sets, e.g., with 
large continents, by adjusting the frequency of the noise. 

As part of the project, parallel compression was added to the 
HDF5 library. Collective operations now coordinate chunk 
operations to process through parallel filters and, for writes, 
collectively re-insert modified chunks as needed. HDF5 had 
only tested the following compression filters in parallel: zlib, 
szip, and shuffle+zlib (a bit shuffling filter inserted before zlib). 
Each of these filters with HDF5 have been benchmarked and 
included in the results so far. 

The ADaptive I/O System (ADIOS) provides a single 
interface in MPI to multiple output methods, aka., transport 
layers. In this study, we examined four transport layers: POSIX, 
MPI, MPI-Lustre, and MPI-Aggregate. ADIOS implements 
compression through data “transformations.” As with HDF5, 
zlib and szip tranformations were utilized. ADIOS does not offer 
a shuffle transformation, but zfp was utilized, which has error-
bounded lossy compression. 

The study explored the performance of HDF5 and ADIOS 
with the struct MiniIO mini-app on a Cray XC50 system with 
both Intel Broadwell and Knights Landing (KNL) cores on a 
Lustre file system. Computationally unbalanced and balanced 
loads were run with each combination of library output option. 
Struct was set to generate approximately 65% valid data points, 
based on typical global ocean models and some regional models. 
Core counts ranged from 512 - 21912. Zfp compression was set 
to an accuracy of 0.0001 and produced a 9x compression ratio 
on average. A subset of the results so far are included in Fig. 1. 

 
Figure 1. A sampling of compression-assisted throughput results 

with two output methods on two processor types. 

Perhaps the most noticeable and promising trend across all 
results is compression scalability with core count. Nearly every 
output type on both processors, with/without load balancing, and 
compression method shows speed up with increasing cores. Zfp 
compression is so scalable that it results in throughputs that are 
faster than the bandwidth of the file system (about 200 GB/s). 
One sees overall performance degradation on KNL, as expected 
given the core counts, weak scaling being utilized, and weaker 
integer computation on KNL. Computational load-balancing 
indeed has a significant effect on performance. Note that for all, 
the unbalanced load is faster, and in several cases significantly 
faster.  Compression does indeed partially fix the issue of 
performance loss due to load balancing (i.e., an imbalanced I/O 
load). In most cases, it outperforms an uncompressed, 
unbalanced load. Future work includes further scalability testing 
on Broadwell and Google Compute Engine to test the scalability 
of compression on Intel Skylake cores.
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