
Direct-FUSE: Removing the Middleman for
High-Performance FUSE File System Support

Yue Zhu† Teng Wang† Kathryn Mohror‡ Adam Moody‡ Kento Sato‡ Muhib Khan† Weikuan Yu†

†Florida State University ‡Lawrence Livermore National Lab
{yzhu, twang, khan, yuw}@cs.fsu.edu {kathryn, moody20, sato5}@llnl.gov

I. INTRODUCTION

An efficient file system is important for high-performance
computing (HPC) systems in supporting large-scale scien-
tific applications. In general, kernel-level file systems are
generalized for broader Unix-like environments, while user-
level file systems are designed with special-purpose features
for particular I/O workloads. The Filesystem in Userspace
(FUSE) [3] is a software framework for Unix-like file systems,
which allows non-privileged users to create their file systems
without kernel-based file system implementations.

Since most user-level file systems are designed to support
particular I/O workloads, different file systems can be used for
different kinds of data in a single job. However, interacting
with multiple FUSE file systems is a complicated task, due to
the communication round trip between an application program
and file system processes, and the need of root privilege to
mount file systems. Our approach is Direct-FUSE, a frame-
work to support user-level file systems without crossing the
kernel boundary. It is built on top of libsysio [1], which is
developed by Sandia Scalable I/O team and provides a POSIX-
like interface redirecting I/O function calls to particular file
systems.

II. THE OVERVIEW OF DIRECT-FUSE
Direct-FUSE is designed to support various user-level file

systems in one job with a unified POSIX-like interface,
while bypassing the FUSE kernel for less overheads. Direct-
FUSE mainly consists of three layers, i.e., adapted-libsysio,
lightweight-libfuse, and backend services.

First, adapted-libsysio is adapted from the original libsysio
to support multiple FUSE file systems, in which we enable
different methods for file path and file descriptor operations
to identify various backend services for applications. Sec-
ond, unlike the original libfuse that includes block devices
registrations and helps bridging file system processes and
kernel module, our lightweight-libfuse exposes only abstract
file system operations to the underlying backend services.
Third, the backend services incorporate multiple user-level file
systems that can deal with different kinds of data. For example,
we can enable both direct access to remote volumes through
SSHFS and the straight communication from application to
GlusterFS deamons. In addition, all three layers are kept in
user space, which helps Direct-FUSE avoid the inter-process
communication of the original FUSE file system resulted from
the use of FUSE kernel module.

III. EVALUATION

In our tests, we compare the I/O performance of a FUSE
file system, the Direct-FUSE, and a native file system on
different storage medias. The experiments are conducted on
machines that are equipped 64 GB memory, and a 1 TB
Seagate ST91000640NS SATA disk with 64 MB cache. Ext4
and tmpfs are used as the underlying file system on disk and
RAMDisk, correspondingly.

1

10

100

1000

10000

4 16 64 256 1024B
an
dw
id
th
(M
B
/s
)

Write Transfer Sizes (KB)

Ext4-fuse Ext4-direct Ext4-native
tmpfs-fuse tmpfs-direct tmpfs-native

Fig. 1: Sequential write bandwidth measured via Iozone

As shown in Fig. 1, Ext4-fuse is a FUSE file system on
top of the native Ext4 file system, Ext4-direct is our Direct-
FUSE on top of Ext4, and Ext4-native is the original Ext4.
Similarly, tmpfs-fuse, tmpfs-direct, and tmpfs-native denote a
FUSE file system on tmpfs, Direct-FUSE on tmpfs, and the
original tmpfs on RAMDisk, respectively. Due to the space
limitation, we only show the sequential bandwidth in this
section. The sequential write bandwidths are measured by
Iozone benchmark [2].

Fig. 1 shows that, Ext4-direct outperforms Ext4-fuse by
11.9% on average. In addition, our design only loses at most
2.5% of I/O bandwidth when compared with Ext4-native. A
similar trend is also observed on tmpfs results due to relatively
low latency of RAMDisk. Therefore, the overhead of Direct-
FUSE on RAMDisk is slightly higher (at most 5.7%) than the
overhead on disk. Overall, our Direct-FUSE delivers higher
I/O bandwidth compared to the FUSE-native file systems on
both disk and RAMDisk. It also demonstrates comparable
performance to the underlying file system.

Acknowledgment This work is performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
LLNL-ABS-740686

REFERENCES

[1] The SYSIO library. https://sourceforge.net/projects/libsysio/.
[2] William D Norcott and Don Capps. Iozone Filesystem Benchmark, 2003.
[3] Miklos Szeredi et al. Fuse: Filesystem in Userspace. Accessed on, 2010.


