
NUMA-Aware Thread and Resource Scheduling
for Terabit Data Movement

Taeuk Kim1, Awais Khan1, Youngjae Kim1, Sungyong Park1, Scott Atchley2

1Sogang University
Seoul, Republic of Korea

2Oak Ridge National Laboratory
Oak Ridge, TN USA 37831

ABSTRACT
The technology advancement has introduced several storage
and network level changes to existing data transfer tools
for efficient data sharing among different storage centers.
LADS, an end-to-end layout-aware data transfer tool opti-
mized for terabit network atop of parallel file system cannot
utilize the NUMA equipped nodes, as it cannot prevent re-
mote NUMA node memory accesses. We cater this issue by
implementing memory-aware thread and resource schedul-
ing at memory level in existing LADS framework.

1. INTRODUCTION
With the continuous expansion of big data, there is a

growing demand for data sharing and collaboration in sci-
entific, research and computing facilities. This data shar-
ing and collaboration requires a tremendous amount of data
transfer between geographically dispersed data centers. The
Brookhaven National Lab (BNL) cooperates with European
Large Hadron Collider (LHC) in the ATLAS experiment
in which more than 3,000 scientists participate in produc-
ing petabytes of simulation and analytical data facilitating
collaboration. Given this environment, the optimization of
end-to-end data transfer tools between data centers is also
important.

The three major contentions can occur in end-to-end data
transfer between data centers; (i) network, (ii) storage, and
(iii) memory. In an environment where each organization is
connected to a terabits network, such as ESNet [1] the net-
work is not considered as a candidate contention [2]. The
storage bottleneck occurs due to I/O contention of threads in
the object storage servers (OSSs) and targets (OSTs), when
thread count exceeds the service rate of the OSS or when
multiple threads access the same OST. LADS [2], a high-
speed end-to-end data transfer tool between data centers,
minimizes this I/O contention by being aware of the layout
of data chunks and scheduling threads based on it. However,
in the NUMA node environment, when a thread accesses
memory on a remote NUMA node, memory contention oc-
curs. If the buffer that LADS uses to transfer data is allo-
cated in another NUMA node, remote NUMA node access is
required. But currently, LADS is unaware of these NUMA
architectures and cannot address these problems. We solve
the memory bottleneck problems by using Memory-aware
Thread Scheduling (MTS) in the LADS framework.

2. DESIGN AND IMPLEMENTATION
We address the remote memory access problem by pro-

viding two mechanisms. First, we propose an RMA buffer
partition technique for each CPU socket. Second, we in-
troduce Memory-aware Thread Scheduling (MTS) to solve
the remote memory access problem. In current LADS ar-
chitecture, three types of threads participate in data trans-
mission; Master thread (MT), Communication thread (CT),

This work was supported by Institute for Information &
communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) (No.2015-0-00590).

I/O thread. In MTS, MT schedules I/O threads by con-
sidering data chunk's layout in PFS. CT keeps the RDMA
connection between source and sink side. I/O thread loads
data chunks to RMA buffer from PFS in source side and
stores data chunks to PFS from RMA buffer on sink side.
Also, MTS divides the RMA buffer per CPU socket and
makes each CPU socket have a connection with opposite
side, so MT, CT and I/O thread manage connection per
every socket.

Socket-based MTS (SMTS): Distributing RMA buffer
into all CPU sockets cannot perfectly prevent I/O thread
from accessing to remote socket's RMA buffer though it can
reduce the probability of remote socket's memory access. To
deal with such cases, we designed SMTS which schedules all
I/O threads to access local socket's RMA buffer.

NUMA-based MTS (NMTS): The recent CPU architec-
ture often has more than one NUMA node per CPU socket.
In this case, it is needed to balance all threads load into all
NUMA nodes in socket. Also, MT and CT interact with
each other using their own work queues, so they should be
aligned to same NUMA node. For this purpose, we propose
NMTS that ensures the load balancing of threads to NUMA
nodes and schedules highly related threads to same NUMA
node's cores.

3. EVALUATION
To evaluate the proposed ideas, we conducted preliminary

experiments using a memory-based file system installed on
each source and sink host. In our experiments, the overhead
of PFS was excluded. We mount NFS on memory file system
(tmpfs) and used 8 big and 24,000 small files workload, with
each total size of 24GB. In Figure 1, baseline is through-
put of LADS in NUMA architecture, and NB is LADS with
NUMA binding I/O threads in node with RMA buffer, and
MTS is the memory-level optimization with both SMTS and
NMTS. When the I/O threads count is low, NUMA binding
shows the best performance, in average 23% as compared
to baseline. But when the thread count gets bigger, the
memory-level optimization outperforms in both workloads,
from 21.7% to 44% in comparison to baseline.

 0

 900

 1800

 2700

 3600

 4500

2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

Baseline
NB

MTS

 0

 900

 1800

 2700

 3600

 4500

2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

Baseline
NB

MTS

(a) Big files (b) Small files

Figure 1: Performance comparison for MTS with baseline.
The x-axis shows the I/O thread count.

4. REFERENCES
[1] ESnet. Energy Sciences Network (ESnet).

[2] Youngjae Kim, Scott Atchley, Geoffroy R. Vallée, and Galen M.
Shipman. LADS: Optimizing Data Transfers Using Layout-aware
Data Scheduling. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies, FAST’15, 2015.


