
PETTTDISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

I/O	Mini-apps,	Compression,	and	I/O	
Libraries	for	Physics-based	Simulations

Presented	by
Sean	Ziegeler (Engility	PETTT)

November	13,	2017

User	Productivity	Enhancement,	
Technology	Transfer,	and	Training (PETTT)

2PETTT

MiniIO:	I/O	Mini-apps

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

”Unstruct”

”Cartiso”

”Struct”

”AMR”

3PETTT

MiniIO:	I/O	Mini-apps

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

”Unstruct”

”Cartiso”

”Struct”

”AMR”

4PETTT

Struct Mini-app

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

� Struct:	Structured	grids	with	masks/blanking
– Masks	for	missing	or	invalid	data	(e.g.,	land	in	an	ocean	model)

� 2D	simplectic noise	to	generate	synthetic	mask	maps
� Can	choose	%	of	blanked	data	points
� Noise	frequency	governs	sizes	of	blanked	areas	(continents	vs	islands)

– 4D	simplectic noise	to	fill	time-variant	variables

– Option	for	load	balancing	non-
masked	points	evenly	(as	
desired)	across	ranks
� But	creates	load	imbalance	

for	I/O	because	blanked	data	
is	still	written

� Compression	theoretically
rebalances	the	I/O	(blanked
constants	compress	well)

5PETTT

Results

0.00

50.00

100.00

150.00

200.00

528 4048 8008 21912

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

Broadwell	ADIOS	POSIX

Unbal./No	Compr.

Unbal./zlib

Unbal./szip

Unbal./zfp

Bal./No	Compr.

Bal./zlib

Bal./szip

Bal./zfp

0.00
20.00
40.00
60.00
80.00
100.00
120.00
140.00
160.00

512 4096 8192

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

KNL	ADIOS	POSIX

Computationally
unbalanced

Balanced	(I/O	unbalanced!)

ADIOS	POSIX:	one	file	per	rank

Red:	No	compression
Blue:	zlib deflate	compression	(think	gzip)
Green:	szip compression
Purple:	zfp (error	bounded	lossy,	0.0001),	~9:1	on	average

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

6PETTT

Results

0.00

50.00

100.00

150.00

200.00

528 4048 8008 21912

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

Broadwell	ADIOS	POSIX

Unbal./No	Compr.

Unbal./zlib

Unbal./szip

Unbal./zfp

Bal./No	Compr.

Bal./zlib

Bal./szip

Bal./zfp

0.00
20.00
40.00
60.00
80.00
100.00
120.00
140.00
160.00

512 4096 8192

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

KNL	ADIOS	POSIX

ADIOS	POSIX:	one	file	per	rank

� Initial	scalability	with	core	count
� Computational	balancing	hurts	performance	a	little

– But	compression	sometimes	helps
� Zfp is	the	fastest	compression
� KNL	is	slower
� ADIOS	POSIX	is	the	fastest	without	compression

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

7PETTT

Results

0.00
50.00
100.00
150.00
200.00
250.00
300.00
350.00
400.00

528 4048 8008 21912

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

Broadwell	ADIOS	MPI

Unbal./No	Compr.

Unbal./zlib

Unbal./szip

Unbal./zfp

Bal./No	Compr.

Bal./zlib

Bal./szip

Bal./zfp

0.00

20.00

40.00

60.00

80.00

100.00

512 4096 8192

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

KNL	ADIOS	MPI

ADIOS	MPI:	one	file	for	all	ranks

� Good	scalability	with	core	count,	especially	with	compression
� Computational	balancing	hurts	performance	a	little

– But	compression	mostly	helps

� Zfp is	by	far the	fastest	compression
� KNL	is	much slower,	especially	the	compression

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

8PETTT

Results

0.00
50.00
100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00

528 4048 8008 21912

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

Broadwell	ADIOS	MPI-Lustre

Unbal./No	Compr.

Unbal./zlib

Unbal./szip

Unbal./zfp

Bal./No	Compr.

Bal./zlib

Bal./szip

Bal./zfp

0.00

20.00

40.00

60.00

80.00

100.00

512 4096 8192

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

KNL	ADIOS	MPI-Lustre

ADIOS	MPI-Lustre:	one	file	for	all	ranks,	tuned	for	Lustre file	system	on	that	system

� Good	scalability	with	core	count,	especially	with	compression
� Computational	balancing	hurts	performance	a	little

– But	compression	mostly	helps

� Zfp is	by	far the	fastest	compression
� KNL	is	much slower,	especially	the	compression
� MPI-Lustre is	the	fastest	with	compression

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

9PETTT

Results

-30
20

70

120

170

220

270

320

370

528 4048 8008 21912

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

Broadwell	ADIOS	MPI-Aggregate

Unbal./No	Compr.

Unbal./zlib

Unbal./szip

Unbal./zfp

Bal./No	Compr.

Bal./zlib

Bal./szip

Bal./zfp

0.00

20.00

40.00

60.00

80.00

100.00

512 4096 8192

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

KNL	ADIOS	MPI-Aggregate

ADIOS	MPI-Aggregate:	m files,	m <	number	of	ranks,	on	Lustre:m =	#_of_OSTs

� Good	scalability	with	core	count,	especially	with	compression
� Computational	balancing	hurts	performance	very	little

– Compression	helps,	but	not	as	much
� Zfp is	by	far the	fastest	compression
� KNL	is	much slower,	especially	the	compression

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

10PETTT

Results

0
10
20
30
40
50
60
70
80

528 4048 8008 21912

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

Broadwell	HDF5

Unbal./No	Compr.

Unbal./zlib

Unbal./szip

Unbal./shuffle+zlib

Bal./No	Compr.

Bal./zlib

Bal./szip

Bal./shuffle+zlib

0.00

5.00

10.00

15.00

20.00

25.00

512 4096 8192

Th
ro
ug
hp

ut
	(G

B/
s)

Cores

KNL	HDF5

HDF5:	one	file	for	all	ranks

� Starts	slower,	but	scalability	with	core	count,	especially	with	compression
� Computational	balancing	hurts	performance	a	lot

– But	compression	helps	somewhat

� Shuffle+zlib is	the	fastest	compression	(zfp not	available	at	the	time)
� KNL	is	much slower,	especially	the	compression

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

11PETTT

Conclusions
� Compression	can	”fix”	I/O	performance	issues	introduced	by	

computational	load	balancing
– With	the	right	output	method,	it	is	faster	than	unbalanced,	uncompressed	output

� Compression	can be	faster	than	uncompressed	I/O
– Always	been	theoretically	possible,	but	rare	in	practice
– Part	computation:	So	can	scale	with	the	simulation

� Zfp compression	is	very	fast	even	at	a	modest	compression	ratio	
(~9:1)
– At	scale,	produces	“virtual”	throughput	faster	than	the	file	system
– Shuffle+zlib in	HDF5	is	also	good

� KNL	is	slower,	with	&	without	compression
– More	cores	per	node	è fewer	nodes	doing	parallel	I/O
– Much	weaker	integer	processing	means	slower	compression

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

12PETTT

Next	Steps
� Tests	on	Intel	Broadwell	cores	at	larger	scales	
– Complete	20k	cores,	begin	at	40-60k	cores

� Zfp with	HDF5
� Quilting	(setting	aside	a	few	cores	dedicated	to	I/O)
– Works	very	well	for	struct [separate	study	by	SDSC]	&	similar	apps
– Hypothesize	that	quilting	would	be	very	poor	for	compression
– E.g.,	for	zfp at	scale,	expect	that	we	do	not	want	to	use	quilting
– Or,	at	least	compression	on	all	cores,	quilting	after	for	actual	I/O

� Test	on	Intel	Skylake cores
– Google	Compute	Engine,	Gluster file	system
– 512	– 4096	cores
– Hypothesize	performance	between	Broadwell	&	KNL

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

13PETTT

This	material	is	based	upon	work	supported	by,	
or	in	part	by,	the	Department	of	Defense	

High	Performance	Computing	Modernization	Program	(HPCMP)	
under	User	Productivity,	Technology	Transfer	and	Training	(PETTT)	

contract	number	GS04T09DBC0017.

DISTRIBUTION	STATEMENT	A.	Approved	for	public	release.	Distribution	is	unlimited.

Work-in-Progress Abstract
Compiler-Assisted Scientific Workflow Optimization

Hadia Ahmed1, Peter Pirkelbauer2,
Purushotham Bangalore2, Anthony Skjellum3

1 Lawrence Berkeley National Laboratory
2 University of Alabama at Birmingham

3 University of Tennessee at Chattanooga

puri@uab.edu Workflow Optimization November 13, 2017 1 / 6

Introduction

Exascale Systems

Data analytics will face tremendous challenges on Exascale systems

Many compute nodes communicate with analytics nodes

Simulations produce vast amount of data

In-situ (in-transit) analytics necessary to deal with limited bandwidth

Simulation / analytics code need to be re-organized

puri@uab.edu Workflow Optimization November 13, 2017 2 / 6

Idea

Describe Re-organization

Users specify re-organization with an annotation language
Tool generates optimized version

Move code from analytics node to simulation (or vice versa)

Describe reductions

. . .

puri@uab.edu Workflow Optimization November 13, 2017 3 / 6

Approach

Compiler-based

Use ROSE to read, analyze, and re-organize source files

puri@uab.edu Workflow Optimization November 13, 2017 4 / 6

Early Results

Restructure Bonds-CSym

On a single system, we achieved speedups between 4% and 12%.

Restructured Bonds-CSym in a 1:1 configuration

Re-organized code
Eliminates storage to file system
Eliminates data container conversion
Enables further compile-time optimizations

Bonds-CSym is quadratic, smaller input sizes exhibit larger speedups

Reduced need for network communication

puri@uab.edu Workflow Optimization November 13, 2017 5 / 6

Thank you

contact: Peter Pirkelbauer (UAB)
e-mail: pirkelbauer@uab.edu

puri@uab.edu Workflow Optimization November 13, 2017 6 / 6

Micro-Storage Services

for Open Ethernet Drive

Hariharan Devarajan, hdevarajan@hawk.iit.edu

Anthony Kougkas, akougkas@hawk.it.edu

Xian-He Sun, sun@iit.edu

Micro-Storage Services for Open Ethernet Drive
Hariharan Devarajan, PhD Student, hdevarajan@hawk.iit.edu

Introduction

11/10/2017 Slide 2

• High cost from storage
• Purchase
• Real-Estate (physical space)
• Maintenance
• Energy

• Up to 40% of the entire energy
footprint

• A very long and complex storage software
stack

• Exa-scale will exacerbate this problem

Supercomputer K Kaust Tianhe-2 Trinity

storage nodes 2000 400 1000 400

mailto:hdevarajan@hawk.iit.edu

Micro-Storage Services for Open Ethernet Drive
Hariharan Devarajan, PhD Student, hdevarajan@hawk.iit.edu

Open Ethernet Drive

11/10/2017 Slide 3

• Intelligent drive
• ARM-powered
• Fixed sized ram
• Network card

• Runs full-fledged Linux OS
• Prototype devices by:

• Seagate Kinetic
• Western Digital (HGST)

• Presented in enclosures of
multiple such drives (JBOD)

• Enclosures have an embedded
switched fabric (60Gbit/s)

mailto:hdevarajan@hawk.iit.edu

Micro-Storage Services for Open Ethernet Drive
Hariharan Devarajan, PhD Student, hdevarajan@hawk.iit.edu

Open Ethernet Drive - Initial results

Pros
• OEDs are capable Parallel FS and Object

Store servers as well as I/O accelerators
(i.e., burst buffers).

• OEDs proved to be 2.2x to 15x more
energy efficient than a typical server.

• Can achieve great parallelism for the
same power cap

Cons
• Computation power is not at par with

server nodes

• No API to use JBOD.

• Running a full-fledged Linux OS on OEDs
is extremely heavy and poses
unnecessary overheads

11/10/2017 Slide 4

Published Work
▪ H. Devarajan, A. Kougkas, and X. H. Sun, “Open Ethernet Drive Evolution of Energy-Efficient Storage Technology.” in

Proceedings of DataCloud’17, Denver,CO.

▪ A. Kougkas, A. Fleck, and X. H. Sun, “Towards energy efficient data management in HPC: The open Ethernet drive
approach,” in Proceedings of PDSW-DISCS’16: 2017, pp. 43–48.

mailto:hdevarajan@hawk.iit.edu
http://www.cs.iit.edu/~scs/psfiles/OED_DataCloud17.pdf
http://www.cs.iit.edu/~scs/psfiles/Anthony_oed_pdsw16.pdf

Micro-Storage Services for Open Ethernet Drive
Hariharan Devarajan, PhD Student, hdevarajan@hawk.iit.edu

Proposal – Design Objectives

• Micro storage kernel
• Minimize OS unnecessary overheads.

• Modules which are not crucial to storage
nodes would be removed.

• Maximize performance
• Fine-tune the kernel to better suit the

needs of the OED technology

• Lightweight API
• Maximize utilization of JBOD

• Parallelization of I/O tasks

• Offload small computation to JBOD

• JBOD Services:
• Manager, I/O Scheduler, Load Balancer

• Provide mount point for application

11/10/2017 Slide 5

mailto:hdevarajan@hawk.iit.edu

Micro-Storage Services for Open Ethernet Drive
Hariharan Devarajan, PhD Student, hdevarajan@hawk.iit.edu

Our first steps

11/10/2017 Slide 6

• BusyBox 1.27.2 Linux
• As a building block

• Very small size (i.e., ~5MB)

• Add XFS file system

• Results
• Reduced boot time by 1300%

• Smaller memory footprint leading
to more available memory to
applications (i.e., from 350MB to
only 15MB)

• Next step:
• Investigate other lightweight Linux

distributions for embedded and
mobile platforms (e.g., ToyBox)

• Develop a light-weight parallel file
system within the JBOD.

mailto:hdevarajan@hawk.iit.edu

Micro-Storage Services for Open Ethernet Drive
Hariharan Devarajan, PhD Student, hdevarajan@hawk.iit.edu

Micro-Storage Services
for Open Ethernet Drive

11/10/2017 Slide 7

Hariharan Devarajan, hdevarajan@hawk.iit.edu

mailto:hdevarajan@hawk.iit.edu
mailto:hdevarajan@hawk.iit.edu

Burst Buffer Evaluation Research directions References

Comprehensive Burst Buffer Evaluation

Eugen Betke, Julian Kunkel

Research Group
German Climate Computing Center
2017-11-12

Eugen Betke, Julian Kunkel Comprehensive Burst Buffer Evaluation

Burst Buffer Evaluation Research directions References

Objectives

Understanding how burst buffers can be used in an alternative way

Burst buffers are mainly used for catching I/O peaks

Improving runtime of I/O intensive application by better workflows

Reducing procurement costs by intelligent usage of burst buffers

Eugen Betke, Julian Kunkel Comprehensive Burst Buffer Evaluation

Burst Buffer Evaluation Research directions References

Test systems and evaluation tools

Test systems

Kove XPD [3]

In-memory storage

DDN IME [5]

SSD-based

Cray DataWarp [2]

SSD-based

Parallel I/O benchmark tools

NetCDF-Bench [4]

is a parallel NetCDF benchmark
generates I/O load to a shared NetCDF file
mimics scientific data

Many climate scientist favor NetCDF to
other formats, because it offers powerful
features and has a simple interface.

IOR

uses MPI-IO interface in our tests
generates I/O load to individual files in
order to get best I/O performance

Eugen Betke, Julian Kunkel Comprehensive Burst Buffer Evaluation

Burst Buffer Evaluation Research directions References

Short-term campaign storage space

Purpose

Reduction of I/O load on main storage

Basic idea
Storing temporary data on main storage
may be inefficient when

Temporary data is stored on burst buffer
Results are stored on main storage

Expectation

Speed up of I/O intensive applications

Evaluation methodology

Gathering of burst buffer characteristics

Goal

Intelligent and efficient workflows

I/O intensive
Application

Burst
Buffer

Main
Storage

final

results

temporary

data

Eugen Betke, Julian Kunkel Comprehensive Burst Buffer Evaluation

Burst Buffer Evaluation Research directions References

Reducing procurement costs of HPCs [1]

CN0
(64GB RAM)

CN1
(64GB RAM)

. . .

CNX
(64GB RAM)

Storage
(52PB)

Observations made on Mistral [1] (HPC of DKRZ)

Most applications are using only a fraction
of available memory

A few memory intensive applications have
high memory requirements

Eugen Betke, Julian Kunkel Comprehensive Burst Buffer Evaluation

Burst Buffer Evaluation Research directions References

Reducing procurement costs of HPCs [2]

CN0
(32GB RAM)

CN1
(32GB RAM)

. . .

CNX
(32GB RAM)

Storage
(52PB)

Remote swap
(how large?)

Purpose

Reducing total HPC costs

Basic idea

Equip compute nodes with less memory
For memory intensive application use
remote swap file system

Expectation

Most programs are not affected
Memory intensive application are affected
by swap overhead

Evaluation methodology

Tracing of swap in/out with kprobes

Goal

Cost model

Eugen Betke, Julian Kunkel Comprehensive Burst Buffer Evaluation

Burst Buffer Evaluation Research directions References

References

HLRE-3 "Mistral". https://www.dkrz.de/Klimarechner/hpc. Accessed
on 2017-03-22.

Cray Inc. Cray XC40 DataWarp’s applications I/O accelerator. Cray
Inc. Cray Inc. 901 Fifth Avenue, Suite 1000 Seattle, WA 98164, Oct. 2015.

Kove. Kove XPD.
http://kove.net/downloads/Kove-XPD-L3-datasheet.pdf. Accessed on
2017-08-24. 2017.

NetCDF-Bench. https://github.com/joobog/netcdf-bench. Accessed
on 2017-08-25.

DDN Storage. Burst buffer & beyond; I/O & Application Acceleration
Technology. DDN Storage. Sept. 2015.

Eugen Betke, Julian Kunkel Comprehensive Burst Buffer Evaluation

https://www.dkrz.de/Klimarechner/hpc
http://kove.net/downloads/Kove-XPD-L3-datasheet.pdf
https://github.com/joobog/netcdf-bench

spcl.inf.ethz.ch

@spcl_eth

S. DI GIROLAMO, P. SCHMID, T. SCHULTHESS, T. HOEFLER

SimFS: A Simulation Data Virtualizing File System

spcl.inf.ethz.ch

@spcl_eth

2

Disk-Backed Solution

T1

Analysis/Visualization Tools

T2

T3

T4

Simulator

Results

Runs the simulation1

Stores the results2

Analyze the results3

Elasticity

Persistent data

I/O Capacity

I/O Bandwidth

1995

MegaBytes

2015

PetaBytes

2025

ExaBytes?

Maintenance Cost: 100$/TB/year

Exabyte/year cost: 100'000'000$

spcl.inf.ethz.ch

@spcl_eth

3

SimFS: Virtualizing Simulation Data

T1

Analysis Tools

T2

T3

T4

COSMO

Checkpoints

Runs the simulation1

Stores the checkpoints2

Analyze the results3

Data Virtualization

Layer

Get data4

Simulation TimeRestart Requested Re-Simulated

How to cache? Where to cache? How to prefetch?
When to

prefetch?

spcl.inf.ethz.ch

@spcl_eth

4

Backup

spcl.inf.ethz.ch

@spcl_eth

5

In Situ Solution

Simulator

Runs the simulation1

T1

Analysis/Visualization Tools

T2

T3

T4

Get simulation data*2

Elasticity

Persistent data

I/O Capacity

I/O Bandwidth

spcl.inf.ethz.ch

@spcl_eth

6

Node 1

Node 3

Node 2

Node 4

Inter-Node

Virtualizer/Cache

(DVL)

Intra-

Node

Cache

Local

Cache

Local

Cache

Local

Cache

Local

Cache

Intra-

Node

Cache

Local

Cache

Local

Cache

Local

Cache

Local

Cache

Intra-

Node

Cache

Local

Cache

Local

Cache

Local

Cache

Local

Cache

Intra-

Node

Cache

Local

Cache

Local

Cache

Local

Cache

Local

Cache

Inter-Node Virtualizer/Cache (DVL)

Intra-Node Cache

Local

Cache

Local

Cache

Intra-Node Cache

Local

Cache

Local

Cache

SDaVI Framework

spcl.inf.ethz.ch

@spcl_eth

DVL-C

7

Analysis Tool

DVL

i.query(x)

Send

query(x)

Call real

nc_open(x)

nc_open(x)

Notify Analysis

Tool

Wait ACK

from the

DVL

Hit = Offline Simulation

spcl.inf.ethz.ch

@spcl_eth

DVL-C

8

Analysis Tool

DVL

i.query(x)

Send

query(x)

Call real

nc_open(x)

nc_open(x)
DVL-S Simulator

Notify

DVL

r = restart(x)

s = simblock(x)

simulate(r, s)

nc_open(x)

nc_puts …

nc_close(x)

i.insert(x)

…

…Notify Analysis

Tool

Wait ACK

from the

DVL

spcl.inf.ethz.ch

@spcl_eth

DVL-C

9

Analysis Tool

DVL

i.query(x)

Send

query(x)

nc_open(x)
DVL-S Simulator

Notify

DVL

r = restart(x)

s = simblock(x)

simulate(r, s)

nc_open(x)

nc_puts …

nc_close(x)

i.insert(x)

…

…Notify Analysis

Tool

Wait for

data

nc_get(x,t1)

RDMA?

Miss = In Situ Simulation

spcl.inf.ethz.ch

@spcl_eth

10

Does intra/local node caching make sense?

M. Besta, T. Hoefler, Fault Tolerance for Remote Memory Access Programming Models,

HPDC'14

RMA read of 10MB

Intra-node 1.08 ms

Inter-Node 3.47 ms

Intra-Cabinet 7.74 ms

Inter-Cabinet 11.36 ms

Inter-Node Virtualizer/Cache (DVL)

Intra-Node Cache

Local

Cache

Local

Cache

Intra-Node Cache

Local

Cache

Local

Cache

Establishing the IO-500 Benchmark

Julian M. Kunkel, John Bent, Jay Lofstead, George S. Markomanolis

2017-11-13

http://www.io500.org

IO500

http://www.io500.org

Approach Challenges & Approach Outlook

The IO-500

Goals

Tracking storage performance

Sharing best practices

Benchmarking Approach

Community driven effort

Patterns: metadata, data, search

Easy for optimized patterns
Hard for naive patterns

Relies on community benchmarks Data pattern complexity

IOR Easy

IOR Hard

MD Hard
MD Easy

N
am

es
p

ac
e

co
m

p
le

xi
ty

Find

Julian M. Kunkel IO500 2 / 7

Approach Challenges & Approach Outlook

List Results from BeeGFS, DataWarp, IME, Spectrum Scale, Lustre

Julian M. Kunkel IO500 3 / 7

Approach Challenges & Approach Outlook

Challenges of Establishing the Benchmark

This is a short summary of experience gained by

Feedback from discussions

From SC/ISC BoFs
Peers

Feedback of people executing the IO-500 on different systems

Thanks to everybody contributing

Julian M. Kunkel IO500 4 / 7

Approach Challenges & Approach Outlook

Challenges & Approach

Representative of applications and user requirements

Supply workloads providing

Upper bound for optimized applications
Performance expectation for non-optimized applications

More workloads and concurrent execution to be integrated

Understandable and human comprehensive results

Report meaningful metrics

Imply low variability of repeated measurements

Computing of an overall score for ranking but retain individual values

Julian M. Kunkel IO500 5 / 7

Approach Challenges & Approach Outlook

Challenges & Approach

Portable

Ran into Python (Shell) portability issues

C-APIs: readdir() does not return type on DataWarp

Non-POSIX stat() call on one system

Inclusive: cover various storage technology and non-POSIX APIs

Allow vendors to use specific optimizations (for easy runs)

Enable replacement for find (IBM Spectrum Scale has optimizations here)

Relying on (IOR’s) AIOR interface (thanks to Nathan for porting mdtest)

We are still the process to support more storage APIs

Julian M. Kunkel IO500 6 / 7

Approach Challenges & Approach Outlook

Challenges & Approach

Scalable, i.e., run on large-scale computers and relevant storage systems

IOR and mdtest are MPI parallelized

Supply a parallel find version

Lightweight: easy to setup and cheap to run

5 minute write/creation phases to limit runtime

Extended IOR/mdtest for phase-out stonewalling options

Trustworthy: prevent (unintended) cheating

Reveal all tunings made (also shares best practice)

Sufficiently large working set

Julian M. Kunkel IO500 7 / 7

Visit our Birds of a Feather at SC

IO500

	Burst Buffer Evaluation
	Research directions
	Approach
	Approach

	Challenges & Approach
	Challenges & Approach

	Outlook
	BoF

