

Monday, Nov 13th

PDSW-DISCS'17 WIP Session

A Study of NVRAM Performance Variability under Concurrent I/O Accesses

Anthony Kougkas - akougkas@hawk.iit.edu, Hariharan Devarajan, Xian-He Sun

Introduction

- Improvement in the speed of disk-based storage systems has been much slower than that of memory, creating a significant performance gap, the so called I/O wall.
- Non-Volatile RAM (NVRAM) offers lower latency and higher bandwidth and can help alleviate the issue.

A Study of NVRAM Performance Variability under Concurrent I/O Accesses Anthony Kougkas, akougkas@hawk.iit.edu

NVRAM in the wild!

Capacity		Bandwidth	
RAM	expensive	cheap	
NVRAM	OK	OK	
DISK	cheap	expensive	

In this study...

- We aim to explore NVRAM's performance characteristics
 - Bandwidth and latency
 - Concurrent access
 - Sequential vs Random
- Medium Sensitivity:

 $Medium - Sensitivity = \frac{Application \ Concurrency}{Medium's \ Access \ Lanes} \times \frac{Reduction \ in \ BW \ (observed)}{Maximum \ BW \ (theoretical)}$

• Is defined as the rate at which each medium experiences a bandwidth reduction due to concurrent accesses competing for the resource.

Testbed

Chameleon System

- Storage Hierarchy Appliance
- Centos 7.1, Mpich 3.2, OrangeFS 2.9.6
- Synthetic benchmark
 - 2 GB total I/O
 - 64 MB requests
 - File-per-process
 - Sequential

Device	RAM	NVRAM	SSD	HDD fast	HDD
Model	M386A4G40DM0	Intel DC P3700	Intel DC S3610	Seagate ST600MP0005	Seagate ST9250610NS
Connection	DDR4 2133Mhz	PCle Gen3 x8	SATA 6Gb/s	12Gb/s SAS	SATA 6Gb/s
Capacity	512 GB(32GBx16)	1 TB	1.6 TB	600 GB	2.4 TB
Latency	13.5 ns	20 µs	55-66 μs	2 ms	4.16 ms
RPM	-	-	-	15000	7200
Buffer	-	-	-	128 MB	64 MB
Max Read BW	65000 MB/s	2800 MB/s	550 MB/s	215 MB/s	115 MB/s
Max Write BW	59000 MB/s	1900 MB/s	500 MB/s	185 MB/s	95 MB/s

Results

Observations:

- RAM is the least sensitive to concurrent access with only a small bandwidth reduction.
- Spinning drives and SSD are bound from the SATA controller
- However, SSD has some degree of internal parallelism (e.g., 2 channels) and thus is somewhere in the middle.
- **NVRAM** demonstrated behavior similar with RAM mostly because the NVMe controller uses the PCIe gen3 bus with x8 lanes and internal parallelism.

Q&A

