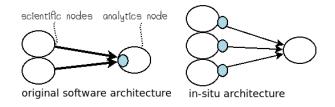
Work-in-Progress Abstract Compiler-Assisted Scientific Workflow Optimization

Hadia Ahmed¹, Peter Pirkelbauer², Purushotham Bangalore², Anthony Skjellum³

¹ Lawrence Berkeley National Laboratory ² University of Alabama at Birmingham

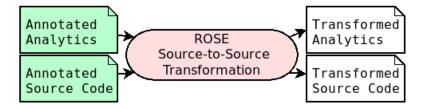
³ University of Tennessee at Chattanooga


Exascale Systems

Data analytics will face tremendous challenges on Exascale systems

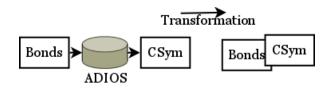
- Many compute nodes communicate with analytics nodes
- Simulations produce vast amount of data
- In-situ (in-transit) analytics necessary to deal with limited bandwidth
- Simulation / analytics code need to be re-organized

Describe Re-organization


Users specify re-organization with an annotation language Tool generates optimized version

Move code from analytics node to simulation (or vice versa)Describe reductions

Compiler-based


Use ROSE to read, analyze, and re-organize source files

Early Results

Restructure Bonds-CSym

On a single system, we achieved speedups between 4% and 12%.

- Restructured Bonds-CSym in a 1:1 configuration
- Re-organized code
 - Eliminates storage to file system
 - Eliminates data container conversion
 - Enables further compile-time optimizations
- Bonds-CSym is quadratic, smaller input sizes exhibit larger speedups
- Reduced need for network communication

Thank you

contact: Peter Pirkelbauer (UAB) e-mail: pirkelbauer@uab.edu

puri@uab.edu