Accelerating the Data Deduplication Performance
with GPU in Hybrid Storage Systems

Prince Hamandawana', Awais Khan, Changgyu Lee, Sungyong Park, Youngjae Kim
Sogang University, Seoul, Republic of Korea

I. INTRODUCTION

The explosive increase in data production has made the
problem of data storage space worse. Data compression has
been actively adopted in backup storage as a way to improve
storage space. However, the compression not only failed to
completely remove the replica across the cluster, but also had
difficulties applying it immediately to in-line mode due to
high compression overhead. As a result, the community began
applying deduplication techniques that divide the data into
smaller chunks, calculate the fingerprint of the chunks, identify
the fingerprint in the lookup table, and then insert new data
or maintain references to existing data. This paper explores
the inline deduplication of the SSD layer in a hybrid scale-
out tiered storage system for cost and performance efficiency
that employs a high-speed SSD as the cache layer for low-
speed HDDs. We configure Ceph [1] as tiered storage and
build inline deduplication on the SSD layer. Deduplication
has a significant impact on storage performance and cost in
a tiered architecture. First, we investigate the performance
degradation of Ceph [1], after enabling data deduplication
across the cluster. We observed an overhead of 27% due
to fingerprint computation during an investigation that seri-
ously degraded the overall cluster performance. To reduce
fingerprinting overhead in inline deduplication, we propose a
technique that uses a GPU accelerator to optimize fingerprint
computation to improve cluster performance. By using our
Approach we obtain a 50% dedup performance improvement.

II. GPU-ACCELERATED DATA DEDUPLICATION

We have structured the Ceph cluster in two tiers by config-
uring the SSD layer for caching writes and the underlying
HDD storage for data storage. In particular, we developed
an inline data deduplication framework for the SSD tier.
Using the CRUSH algorithm in Ceph, all object writes are
mapped to the OSDs of the SSD layer, chunked using a
fixed-size chunking scheme, fingerprinted using the SHA-1
algorithm, and deduplication checks performed before I/O disk
submission. We implemented an object redirection scheme
that maps different objects (already stored copies in storage)
with the same hash value, but with different names. An
object can refer to other objects if they have same hash
value, to achieve maximum space saving. We adopted a
database partitioning approach for efficient dedup metadata
management, to reduce query contention at individual nodes.
We achieved this by maintaining partitioned database shards
on each object storage server (OSS) on the SSD tier. Conse-
quently, bulk metadata requests are spread to different nodes
at the SSD tier for dedup query whilst maintaining negligible
amount of metadata space on the SSDs. But we found that
inline deduplication caused I/O performance degradation due
to fingerprint computation. As nowadays, state of the art
compute nodes are equipped with high-performance GPUs.
We get the motivation to leverage their massive parallelism of

TMr. Prince is currently a graduate student in Ajou University, Suwon,
Republic of Korea.

This work was supported by Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korea government (MSIT)
(No0.2015-0-00590)

computation to accelerate fingerprinting. GPU usage, however
raises challenges on how best we can manage GPU memory in
bursty incoming requests as allocation is mostly predetermined
at compile time without full knowledge of memory request
patterns at run-time. These static predefined GPU memory
allocations are heavily programmer dependent and they can
cause a huge buffer queue increase because it has to wait for
a GPU memory release. In addition, GPU utilization may be
lowered when using the GPU for fingerprinting because the
data is transferred to the GPU, the fingerprint is calculated, the
calculated fingerprint is sent back to the CPU memory, and the
GPU buffer is cleared before another transfer begins. It can
also trigger unnecessary swapping when GPU memory is full.
By using GPU memory-aware allocation which keeps track
of and allocates according to available GPU memory, we can
achieve higher GPU memory utilization. It will also prevent
blind GPU memory allocations, which leads to unnecessary
swapping operations. Moreover, overlapping data transfers and
GPU executions, we can further optimize the fingerprinting
overhead to achieve higher dedup efficiency.

III. EVALUATION

We conducted a preliminary evaluation of our approach in
Ceph Jewel v10.2.5. Our testbed setup consists of 4 OSS
servers equipped with Intel Xeon CPU ES-2640 v3 processor,
32GB memory and 12GB NVIDIA Tesla K80 GPU. We
provisioned 2xSSDs for cache and 4xHDDs in storage tier.
A separate server was used as the Ceph client. We configured
rados block device (RBD) and used fio benchmark tool to
generate random writes to the RBD of total 1 GiB size
with a dedup ratio of 100%. Figure 1 depicts the dedup
I/O processing time overhead from client request to disk
submission. We observed fingerprinting constituted 77% of
total dedup overheads (chunking+fingerprinting+dedup query)
in the baseline approach. The second bar shows that GPU fin-
gerprinting achieves 65% reduction in fingerprint computation
overhead and consequently, 50% dedup overhead reduction.
We plan to further optimize our GPU approach to reduce the
fingerprint overhead near to negligible through implementing
a GPU memory-aware transfer mechanism in conjunction with
overlapping CPU-GPU data transfers with GPU executions.

Client Request ——1
Chunking ==
50 Fingerprinting ==
Dedup Check mmm
<> 1/O Disk Submission s
o 40
@2
©
£ 30
5 20
28
10 (8
c?
0
128KB 256KB 512KB 1024KB
Chunk Size
Fig. 1: Deduplication Perforrnance w1th CPU vs GPU.
REFERENCES

[1] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Lodg and C. Maltzahn,
“Ceph: A Scalable, ngh performdnce Distributed File System,” in
Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, ser. OSDI, 2006.



