
Comprehensive Burst Buffer Evaluation
Eugen Betke∗, Julian Kunkel∗

∗Deutsches Klimarechenzentrum GmbH

Abstract—The German Climate Compute Center provides
climate researchers with the necessary storage and compute
capabilities to run large scale climate simulations, which tend
to experience bursty I/O as snapshots are written. Burst buffers
offer high throughput and low latencies, but how to best
integrate into data centers is not fully understood. This work
is studying the performance and application of different burst
buffer solutions with a particular focus on climate applications.
In our research we investigate characteristics of different burst
buffer technologies and evaluate alternative ways of use.

I. CHALLENGES

A. Short-term campaign storage space

While burst buffers are mainly used for catching I/O peaks
and may use different policies for de-staging data, the true
benefit emerges when using them to manage and process data
for random tasks in work flows like in-situ visualization and
post-processing of known data products. Therefore, we believe
the true benefit of utilizing fast storage comes when adapting
work flows. For example, burst buffers (or other fast storage
systems) can be used in an alternative way, e.g. ordinary
scratch space. This is motivated by the fact that simulations
often create data (e.g. intermediate results or snapshots) that
losses its value after the simulation is finished and can be
deleted. Additionally, such a system would catch random I/O
to a shared file much better than main storage. Particularly, this
is useful for typical climate data file formats such as NetCDF3
and 4. Typically, simulations produce only a small portion of
data that needs to be stored on a long-term storage.

B. Memory vs. remote swap file system

In this study we investigate the system behavior which is
equipped with a moderate amount of memory, but has access
to large swap file systems deployed on fast storage device. In
our workload manager logs we could see that the most jobs on
our HPC are using only a fraction of the available memory, and
only a few jobs had high memory requirements. Procuring a
system with less, but sufficient memory for the most jobs, and
providing additional memory for the few memory intensive
jobs in form of remote swap file system, may significantly
reduce the total system costs. The question is how much
memory and swap space is optimal for compute nodes? We
hope to find an answer to this question and create a cost model.

II. APPROACH

We first explore the benefit for climate data access patterns
using the NetCDF API. NetCDF-Bench [1] is a native NetCDF
parallel I/O benchmark that mimics I/O behavior of scientific
applications. With IOR we measure the peak MPI-IO perfor-
mance that can be achieved with individual and shared I/O.

Our cooperation partners provided us access to their burst
buffer systems.

Kove XPD [2] is a in-memory storage that offers high
throughput and low latency. The integrated UPS and multiple
modes for de-staging data from volatile memory onto persis-
tent media allows a usage as a persistent storage. The direct
access over the proprietary KDSA interface is the fastest way
to communicate with the XPDs. Based on this interface we
implemented an MPI-IO driver and run IOR and NetCDF-
Bench benchmarks. The work is mostly done.

DDN IME [3] is a SSD-based storage cache with high
performance I/O characteristics and is our current object of
investigation. On the test system, IMEs can be accessed
through the IME-fuse file system. DDN also developed an
experimental MPI-IO driver with direct access to IME. We
will run similar benchmarks as we did on Kove XPDs to make
both systems comparable.

Cray DataWarp [4] is another SSD-based burst buffer
technology we will likely evaluate.

Along with the evaluation of the single burst buffer tech-
nologies we investigate the impact of memory reduction on
compute nodes. For that purpose, we developed a Linux swap
monitoring tool which uses the Linux’s kprobe debugging
mechanism for tracing calls to the swap in/out kernel func-
tions. Firstly, we run a customized STREAM benchmark [5]
on a test system with sufficient memory and no swap file
system in order to obtain the best performance values. Then,
we reduce the amount of memory by creating a large ram
disk, create a swap file system on that ram disk, and repeat the
benchmark. This configuration forces the operation system to
swap memory when STREAM tries to allocate more memory
than available. In this way we can see overhead of Linux swap
and can observe the worst case behavior. This information is
only a milestone on the way to the cost model.

In the next steps we are going to run benchmarks with a
more realistic workloads and to create the swap file system on
fast remote storage device.

REFERENCES

[1] “Netcdf-bench,” https://github.com/joobog/netcdf-bench, 2017-08-25.
[2] Kove, “Kove xpd,” http://kove.net/downloads/Kove-XPD-L3-datasheet.

pdf, 2017, 2017-08-24.
[3] D. Storage, Burst buffer & beyond; I/O & Application Acceleration

Technology, https://www.ddn.com/download/resource library/brochures/
technology/IME FAQ.pdf, DDN Storage, 9 2015.

[4] C. Inc., Cray XC40 DataWarp’s applications I/O accelerator, http:
//www.cray.com/sites/default/files/resources/CrayXC40-DataWarp.pdf,
Cray Inc., Cray Inc. 901 Fifth Avenue, Suite 1000 Seattle, WA 98164,
10 2015.

[5] “STREAM,” https://github.com/jeffhammond/STREAM, 2017-08-25.


