
Abstract: Compiler-Assisted Scientific Workflow Optimization

Hadia Ahmed1, Peter Pirkelbauer2, Purushotham Bangalore2, Anthony Skjellum3

1Lawrence Berkeley National Laboratory, Computational Research
2University of Alabama at Birmingham, Computer Science

3University of Tennessee at Chattanooga, SimCenter
1hahmed@lbl.gov, 2{pirkelbauer, puri}@uab.edu, 3tony-skjellum@utc.edu

Abstract
With increasing amount of data generated and with stringent power
and memory requirements, data analytics will face tremendous
challenges on Exascale systems.

This paper presents an early prototype of a compiler-based
framework to optimize the workflow for data processing. Our ap-
proach is to analyze components across stages of the workflow, and
merge some of the analytics code, such as data reductions, into the
compute code. By doing so, the transformed workflow reduces data
movement over the network, thereby increasing overall system per-
formance.

1. Introduction
In realistic simulations, it is expected that in the scale-out to the
level of leadership-class compute systems, there will be a division
between compute nodes that generate data and centralized (or spe-
cialized/edge) nodes that deal with storage and data analytics. Each
compute node will communicate its results to an analytics node for
further processing. Several stages of analytics node may exist be-
fore the results reach central storage. To achieve a good ratio be-
tween compute nodes and analytics nodes, performing in-situ anal-
ysis on the compute nodes will be a necessity.

The key insight underlying our work is that scientific code
and analytics code form a single cohesive unit. By analyzing the
whole application, we can optimize the entire system in ways
that are impossible if we process each module independently. For
example, an holistic view allows us to identify components of
the analytics code that can be better processed on nodes that run
the simulation, thereby reducing the amount of inter-node data
movement and reducing resource requirements on the analytics
side. In some scenarios, it may be suitable to embed parts of
the analytics code into the simulation code, thereby exploiting
temporal cache locality and reducing intra-node data movement.

This paper presents a first early prototype of a ROSE based
tool, that assists in making scientific workflows more efficient. The
tool’s goal is to jointly analyze and transform simulation and ana-
lytics code in ways that make the combined system more efficient.

2. System Design

Figure 1. ROSE transformation pass restructures annotated source
code and analytics code to reduce communication.

Figure 2. The image shows a case where parts of the data ana-
lytics code are merged into the scientific code. The reduced data
movement may increase the ratio of compute to analytics nodes.

Fig. 1 gives a graphical view of our ROSE based transformation
tool. Our tool analyzes annotated scientific codes and annotated
analytics codes. The annotations describe how the whole workflow
should be restructured. Following these annotations, our tool moves
parts of the data analytics code into the scientific code. For exam-
ple, reductions can be partially executed immediately after the data
has been computed. Fig. 2 shows the transformation graphically.
This reduces the amount of data that is communicated from data
generating nodes to data processing nodes, and increases the ratio
of compute nodes to data processing nodes.

3. Early Results
We have produced a first early prototype and tested it on a Bonds-
Csym workflow. Bonds is a LAMMPS backend that computes
bonds between atoms based on a distance threshold, and CSym is
a central symmetry computation for an atom and adjacent atoms.
We tested with the codes on a single node and used ADIOS for
intermediate data storage. We annotated both Bonds and CSym,
and our tool merged the CSym code into Bonds. The transformation
eliminated a data container conversion needed to interact with
ADIOS and the need for intermediate storage. Depending on data
size, the transformed code runs between 4% and 12% faster.

Merging codes enables further node-level optimizations, such
as fusion of data generating loops with analytics loops. For our test
case, loop fusion did not yield any tangible speedup.

4. Conclusion and Future work
We have presented an early effort for transforming scientific work-
flows across node boundaries. Merging processing from across
nodes reduces data movement. Thus far, we have experimented
with analytics code moved into scientific codes in a 1:1 configu-
ration. Extending this work, will require us to transform codes that
operate in n:1 (or even n:m) configurations. To this end, we work
on a more expressive annotation language. The ability to transform
codes across node boundaries also creates opportunities to utilize
heterogeneous hardware (e.g., GPU, FPGAs) at the producer nodes
more effectively.


	Introduction
	System Design
	Early Results
	Conclusion and Future work

