
Architecting HBM as a High Bandwidth, High
Capacity, Self-Managed Last-Level Cache

Tyler Stocksdale
Advisor: Frank Mueller

Mentor: Mu-Tien Chang
Manager: Hongzhong Zheng

11/13/2017

2

Background
• Commodity DRAM is hitting the memory/bandwidth wall

– Off-chip bandwidth is not growing at the rate necessary for the
recent growth in the number of cores

– Each core has a decreasing amount of off-chip bandwidth

Bahi, Mouad & Eisenbeis, Christine. (2011). High Performance by Exploiting Information
Locality through Reverse Computing. 25-32. 10.1109/SBAC-PAD.2011.10.

3

Motivation
• Caching avoids

memory/bandwidth wall

• Large gap between
existing LLC’s and DRAM
– Capacity
– Bandwidth
– Latency

• Stacked DRAM LLC’s have
shown 21% improvement
(Alloy Cache[1])

Core
Private
Cache

Core
Private
Cache

Core
Private
Cache

Core
Private
Cache

Last Level Cache (LLC)

DRAM

Chip area

Stacked DRAM

4

What is Stacked DRAM?
• 1-16GB capacity
• 8-15x the bandwidth of off-

chip DRAM [1], [2]

• Half or one-third the latency
[3], [4], [5]

• Variants:
– High Bandwidth Memory (HBM)
– Hybrid Memory Cube (HMC)
– Wide I/O

5

Related Work
• Many proposals for stacked DRAM LLC’s [1][2][6][7][11]

• They are not practical
– Not designed for existing stacked DRAM architecture
– Major modifications to memory controller/existing hardware

• They don’t take advantage of processing in memory (PIM)
– HBM’s built-in logic die
– Tag/data access could be two serial memory accesses

6

How are tags stored?
• Cache address space smaller than

memory address space
– “Tag” stores extra bits of address
– Tags are compared to determine

cache hit/miss

• Solutions:
– Tags in stacked DRAM
– Memory controller does tag

comparisons
– Two separate memory accesses
– Serial vs. Parallel access
– “Alloyed” Tag/Data structure for a

single access

MC DRAM MC DRAM

Invalid data if tag misses

Serial Parallel

7

Alloy Cache [1]

• Tag and data fused together as
one unit (TAD)

• Best performing stacked DRAM
cache (21% improvement)

• Used as comparison by many
papers

• Limitations:
– Irregular burst size
– Wastes capacity (32B per row)
– Direct mapped only
– Not designed for existing stacked

DRAM architecture

Extra burst for tag

MC DRAM

Invalid data if tag misses

Alloy

8

Our Idea

1. Use HBM for our stacked DRAM LLC
– Best balance of price, power consumption, bandwidth
– Contains logic die

2. HBM logic die performs cache management

3. Store tag and data on different stacked DRAM channels

9

Logic Die Design

• Less bandwidth over data bus

• Memory controller is simple
– No tag comparisons
– Sees HBM Cache as ordinary

DRAM device
– Minor modification for Cache

Result signal

• Requires new “Cache Result”
signal

– Signals hit, clean miss, dirty miss,
invalid, etc.

Logic Die

Address translator
(single address to tag

address + data address)

Command translator
(single command to

command for tag + data)

Scheduler

Data buffer

Tag comparator

HBM

Cache
result signal

Command/
Address Bus

Data Bus

(Tags)

Stacked DRAM

(Data)

10

Tag/Data on Different Channels

• 16 pseudo-channels
– Use 1 pseudo-channel for tags
– Use 15 pseudo-channels for data

• Benefits:
– Parallel tag/data access
– Higher capacity than Alloy cache

• Data channels have zero wasted space
• Tag channel wastes 16MB total
• Alloy cache wastes 64MB total

Processor

HBM

Logic Die

T D D D

Memory
Controller

D D D D

D D D D

D D D D

11

Test Configurations

3. Separate Tag/Data Channels2. Logic Die Cache Management
MC Logic Die DRAM

Extra burst for tag

MC Logic Die DRAM MC Logic Die DRAM

1. Alloy Cache (baseline)

Invalid data if tag misses

Data only if
tag hits

Data only if
tag hits

Extra burst
for tag

• Implemented on HBM
• Logic die unused

• Cache management moved
to logic die

• Still using Alloy TAD’s

• Cache management still on
logic die

• Tag/Data separated

“Alloy” “Alloy-like” “SALP”
(sub-array level parallelism)

12

Max Max

Improved Theoretical Bandwidth and Capacity

Separate channels for Tag and Data (SALP) result in
significant bandwidth and capacity improvements

13

Improved Theoretical Hit Latency

• Timing parameters
based on Samsung
DDR4 8GB spec.

• Write buffering on
logic die

• SALP adds additional
parallelism

14

Simulators
• GEM5 [8]

– Custom configuration for a multi-core architecture with HBM last-level cache
– Full system simulation: boots linux kernel and loads a custom disk image

• NVMain [9]

– Contains a model for Alloy Cache
– Created two additional models for Alloy-like and SALP

• Configurable parameters:
– Number of CPU’s, frequency, bus widths, bus frequencies
– Cache size, associativity, hit latency, frequency
– DRAM timing parameters, architecture, energy/power parameters

15

Simulated System Architecture
CPU0

L1-Instruction L1-Data

CPU1 CPU3

Shared L2

Main Memory

HBM Cache
(NVMain)

CPU2

16

Performance Benefit - Bandwidth

Alloy-like SALP

Minimum -0.30% (UA) -0.72% (Dedup)

Maximum 25.53% (Swaptions) 7.07% (FT)

Arithmetic Mean 3.10% 1.22%

Geometric Mean 2.89% 1.19%

Alloy-like
configuration has

higher average
bandwidth

17

Performance Benefit – Execution Time

Alloy-like SALP

Minimum -0.20% (IS) -0.42% (UA)

Maximum 4.26% (FT) 6.59% (FT)

Arithmetic Mean 0.92% 1.73%

Geometric Mean 0.93% 1.76%

SALP
configuration has

lower average
execution time

18

Conclusions
• Beneficial in certain cases

– Theoretical results indicate noticeable performance
benefit

– Categorize benchmarks that perform well with HBM cache
– Benchmark analysis to decide cache configuration

• Already in progress for Intel Knights Landing

• Much simpler memory controller
– Equal or better performance

19

References
[1] M. K. Qureshi and G. H. Loh, “Fundamental latency tradeoff in architecting DRAM caches: Outperforming impractical SRAM-tags with a

simple and practical design,” in International Symposium on Microarchitecture, 2012, pp. 235–246.
[2] “Intel Xeon Phi Knights Landing Processors to Feature Onboard Stacked DRAM Supercharged Hybrid Memory Cube (HMC) upto 16GB,”

http://wccftech.com/intel-xeon-phiknights-landing-processors-stacked-dram-hmc-16gb/, 2014.
[3] C. C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A TwoLevel Memory Organization with Capacity of Main Memory and Flexibility of

Hardware-Managed Cache,” in International Symposium on Microarchitecture (MICRO), 2014, pp. 1–12.
[4] S. Yin, J. Li, L. Liu, S. Wei, and Y. Guo, “Cooperatively managing dynamic writeback and insertion policies in a lastlevel DRAM cache,” in

Design, Automation & Test in Europe (DATE), 2015, pp. 187–192.
[5] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, D. Solihin, and R. Balasubramonian, “CHOP: Adaptive filter-based

DRAM caching for CMP server platforms,” in International Symposium on High Performance Computer Architecture (HPCA), 2010, pp. 1–
12.

[6] B. Pourshirazi and Z. Zhu, "Refree: A Refresh-Free Hybrid DRAM/PCM Main Memory System", International Parallel and Distributed
Processing Symposium (IPDPS), 2016, pp. 566-575.

[7] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan, "Bi-Modal DRAM Cache: Improving Hit Rate, Hit Latency and Bandwidth",
International Symposium on Microarchitecture (MICRO), 2014, pp. 38-50.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.
Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

[9] M. Poremba, T. Zhang, and Y. Xie, “NVMain 2.0: Architectural Simulator to Model (Non-)Volatile Memory Systems,” Computer
Architecture Letters (CAL), 2015.

[10]S. Mittal, J.S. Vetter, “A Survey Of Techniques for Architecting DRAM Caches,” IEEE Transactions on Parallel and Distributed Systems,
2015.

20

Outline
• Background
• Contribution 1: full-system simulation infrastructure
• Contribution 2: self-managed HBM cache
• Appendix

21

Background

[Source: “Memory systems for PetaFlop to ExaFlop class machines” by IBM, 2007 & 2010]

Linear to Exponential demand for Memory Bandwidth and Capacity

22

Overview
• Background

– Stacked DRAM cache as a high bandwidth, high capacity
last-level cache potentially improves system performance

– Prior results [1]: 21% performance improvement
• Challenges

– [Challenge 1] Unclear about the benefit of HBM cache
• We need a way to study the HBM cache and understand its

benefits
– [Challenge 2] With minimal changes to the current HBM2

spec, how to best architect HBM caches

23

Contributions
• Solution to [Challenge 1]: Brought up and augmented the Gem5 and NVMain

simulators to study HBM cache in a full-system environment
– Simulates a fully bootable linux kernel on top of custom HBM LLC architecture
– Simulator can be easily modified for system changes
– Created 3 different cache configurations to test
– Integrated PARSEC/NAS benchmarks using cross-compiler

• Solution to [Challenge 2]: Proposed two HBM cache with in-HBM (logic die) cache
manager
– Type 1: Alloy-like. Data and tag in the same row. Uses pseudo channel and in-

HBM cache manager to reduce tag/data transfers between the host and the
HBM.

– Type 2: SALP. Data and tag on different pseudo channels. We use subarray
level parallelism to further improve performance.

24

Motivation
• Caching avoids the memory/bandwidth wall
• Large gap between existing last-level caches (LLC’s)

and DRAM
– Modern workloads demand hundreds of MB’s of LLC [2], [3]
– Existing stacked DRAM LLC’s have shown up to 21% system

performance improvement [1]

25

Stacked DRAM Variants
• Hybrid Memory Cube (HMC)

– High end servers/enterprise
– Highest bandwidth, cost, power
– Used in Knights Landing Processor
– Backed by Intel (proprietary)
– PCB connectivity

• HBM
– Graphics, HPC, networking
– Slightly less bandwidth, cost, power than HMC
– Used in Nvidia GPU’s
– JEDEC standard, created by Micron/AMD
– Logic die

• Wide I/O
– Smartphones, mobile
– Lowest bandwidth, cost, power
– JEDEC standard
– Lots of thermal issues, sits directly on top of processor

Best Choice

26

Outline
• Background
• Contribution 1: full-system simulation infrastructure
• Contribution 2: self-managed HBM cache
• Appendix

27

Benchmarks
• PARSEC

– Pre-compiled and ready to run
– Some benchmarks aren’t very stressful for the memory system

• NAS
– Expected to stress the memory system
– Used cross-compiler and scripts to compile and integrate with GEM5

28

Outline
• Background
• Contribution 1: full-system simulation infrastructure
• Contribution 2: self-managed HBM cache
• Appendix

29

Techniques for self-managed HBM cache
• Pseudo channel

– Benefit: reduce wasted bandwidth to transfer tag

• Logic die with in-HBM cache manager
– Benefit: reduce unnecessary tag/data burst from HBM to

Host

• SALP
– Benefit: enable tag/data parallel access

30

Tag and data organizations
• Host-managed Alloy cache (baseline)

– 32B unused per row (wastes 64MB total)
– 4.2 million less cache lines than our proposal

• Self-managed Alloy-like HBM Cache
– Tag and data arranged exactly like Alloy cache
– Longer burst length internally, but not externally

• Self-managed SALP HBM Cache
– Reserve 1 pseudo-channel (256MB) for tags and the other 15 for data
– 60M cache lines require 60M tags
– 60M, 4B tags requires 240MB of space (wastes 16MB total)
– 60M, 64B cache lines require 15 tag bits, 2 valid/dirty bits (17 bits total)
– 4B tags have 15 bits leftover for miscellaneous flags, coherency bits, etc.

31

Pseudo channel
• HBM2 spec:

– Default: 8 channels, 128b-wide
– Configurable: 16 pseudo channels, 64b-wide

• Why use pseudo channel?
– Normal channel

• 1 access = 128b
• But tag is only 4B (32b)
• Wasting 96b (75%) of channel

– Pseudo channel
• 1 access = 64b
• Wasting 32b (50%) of channel

– Pseudo channel organization saves 25% internal data IO bandwidth

32

SALP (subarray level parallelism)
Problem:
• Data can be accessed in parallel, but tag accesses may experience a bank conflict

33

SALP (subarray level parallelism)
Solution:
• SALP: Each bank has 16 subarrays, which can be accessed in parallel
• Each subarray stores a different tag
• Accesses can still be processed concurrently even though they are in the same bank

34

Future Work
• Study types of applications with

workloads that would benefit from
HBM

• Study the effect of HBM cache on
fused-architecture processors
– GPU simulation
– Shared LLC and main memory
– Private lower level caches

• Add complexity to the logic die to
enable cache associativity (replacement
policies)

• Add complexity to logic die to support
coherency across multiple nodes

• Investigate fault tolerance

Estimation based on [1]

35

Outline
• Background
• Contribution 1: full-system simulation infrastructure
• Contribution 2: self-managed HBM cache
• Summary
• Appendix

Serial
• Read Hit
• Read Miss – Invalid, Read Miss – Valid Clean
• Read Miss – Valid Dirty
• Write Hit
• Write Miss – Invalid, Write Miss – Valid Clean
• Write Miss – Valid Dirty

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read access

dataResp
Read access

15ns

15ns

+15ns
(hit)

(50ns)

(0ns)

(85ns)

Latency: 85ns
Energy: 14

37

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read access

Read access

Write access

Write access

15ns

+15ns

30ns

15ns

30ns

(miss)

(50ns)

(71.25ns)

(80.25ns)

(0ns)

Latency: 170.5ns
Energy: 28

(110.25ns)

38

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read access

Write access

dirtyDataResp
Read access

Write access

Write access

15ns

(miss)

Read access
+15ns

15ns (50ns)

(71.25ns)

15ns
4ns(85ns)

+15ns

30ns
(160.25ns)

30ns

30ns

(0ns)

Latency: 220.5ns
Energy: 42

39

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read access 15ns

+15ns
(hit)

(50ns)

(0ns)

Latency: 110.25ns
Energy: 14

Write access 30ns

40

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read access 15ns

(miss)
+15ns

(50ns)

(0ns)

Write access

Write access

30ns

30ns

(110.25ns)

Latency: 170.5ns
Energy: 21

41

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read access 15ns

(miss)
+15ns

(50ns)

(0ns)

Write access

dirtyDataResp
Read access

Write access

Write access

4ns(85ns)

+15ns

(160.25ns)

30ns

15ns

30ns

30nsLatency: 220.5ns
Energy: 35

42

Parallel
• Read Hit
• Read Miss – Invalid, Read Miss – Valid Clean
• Read Miss – Valid Dirty
• Write Hit
• Write Miss – Invalid, Write Miss – Valid Clean
• Write Miss – Valid Dirty

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read accessRead access

(hit)

15ns

(0ns)

Latency: 35ns
Energy: 14

44

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read accessRead access

(miss)

15ns

Write access 30ns

(80.25ns)

15ns

(0ns)

+15ns
(50ns)

Latency: 131.5ns
Energy: 35

Read access

(71.25ns)

Write access 30ns

(101.5ns)
(110.25ns)

45

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read accessRead access

Write access

(miss)

15ns

(0ns)

Read access15ns

(71.25ns)

Write access 30ns

(80.25ns)

+15ns
(50ns)

30ns

(66.25ns)

Latency: 131.5ns (146.25ns worst case)
Energy: 42

Write access 30ns

(101.5ns)
(110.25ns)

46

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read accessRead access

(hit)

15ns

(0ns)

Write access 30ns

+15ns
(50ns)

Latency: 110.25ns
Energy: 21

47

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read accessRead access 15ns

(0ns)

Write access 30ns

+15ns
(50ns)

Latency: 110.25ns
Energy: 28

Write access

(miss)

48

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Read accessRead access

Write access

(miss)

15ns

(0ns)

Write accessWrite access 30ns

(80.25ns)

+15ns
(50ns)

30ns

(66.25ns)

Latency: 110.25ns
Energy: 35

49

Latency Optimized
• Read Hit
• Read Miss – Invalid, Read Miss – Valid Clean
• Read Miss – Valid Dirty
• Write Hit
• Write Miss – Invalid, Write Miss – Valid Clean
• Write Miss – Valid Dirty

DRAM Memory
Controller

Logic Die 3D DRAM
Array

Latency: 35ns
Energy: 12

(0ns)

(hit)

Read accessRead access 15ns

51

DRAM Memory
Controller

Logic Die 3D DRAM
Array

(miss)

15ns Read access
(71.25ns)

Write accessWrite access 30ns

Latency: 131.5ns
Energy: 29

Read accessRead access 15ns

(0ns)

52

DRAM Memory
Controller

Logic Die 3D DRAM
Array(0ns)

(miss)

Read accessRead access 15ns

Write access30ns

(71.25ns)

Write accessWrite access 30ns

15ns Read access

(85ns)
+13.75ns

Latency: 146.25ns (131.5ns best case)
Energy: 38

53

DRAM Memory
Controller

Logic Die 3D DRAM
Array(0ns)

(hit)

Read accessRead access 15ns

Latency: 107.25ns
Energy: 17

Write access

+20ns

(51ns)

30ns

54

DRAM Memory
Controller

Logic Die 3D DRAM
Array(0ns)

(miss)

Read accessRead access

Latency: 107.25ns
Energy: 22

15ns

Write access

+20ns

(51ns)

Write access 30ns

55

DRAM Memory
Controller

Logic Die 3D DRAM
Array(0ns)

(miss)

Read accessRead access

Write access

+20ns

(51ns)

Write access

15ns

30ns

Write access30ns

(35ns)

Latency: 107.25ns
Energy: 31

(96.25ns)

56

Energy Optimized
• Read Hit
• Read Miss – Invalid, Read Miss – Valid Clean
• Read Miss – Valid Dirty
• Write Hit
• Write Miss – Invalid, Write Miss – Valid Clean
• Write Miss – Valid Dirty

DRAM Memory
Controller

Logic Die 3D DRAM
Array(0ns)

(hit)

Read access

Read access

15ns

15ns

+20ns

Latency: 85ns
Energy: 12

(51ns)

58

DRAM Memory
Controller

Logic Die 3D DRAM
Array

(miss)

15ns Read access
(71.25ns)

Write accessWrite access 30ns

Latency: 131.5ns
Energy: 24

Read access 15ns

(0ns)

59

DRAM Memory
Controller

Logic Die 3D DRAM
Array(0ns)

(miss)

Read access 15ns

Write access30ns

(71.25ns)

Write accessWrite access 30ns

15ns Read access

(85ns)

+13.75ns Read access 15ns

+20ns
(51ns)

+20ns
(101ns)

(146.25ns)
Latency: 157.25ns
Energy: 38

60

DRAM Memory
Controller

Logic Die 3D DRAM
Array(0ns)

(hit)

Read access 15ns

Latency: 107.25ns
Energy: 12

Write access

(51ns)

30ns

+20ns

61

DRAM Memory
Controller

Logic Die 3D DRAM
Array(0ns)

(miss)

Read access

Latency: 107.25ns
Energy: 17

15ns

Write access

(51ns)

Write access 30ns

+20ns

62

DRAM Memory
Controller

Logic Die 3D DRAM
Array(0ns)

(miss)

Read access 15ns

Write access30ns
Write accessWrite access 30ns

(85ns)

Latency: 157.25ns
Energy: 31

Read access 15ns

+20ns
(51ns)

+20ns
(101ns)

(146.25ns)

63

	Architecting HBM as a High Bandwidth, High Capacity, Self-Managed Last-Level Cache
	Background
	Motivation
	What is Stacked DRAM?
	Related Work
	How are tags stored?
	Alloy Cache [1]
	Our Idea
	Logic Die Design
	Tag/Data on Different Channels
	Test Configurations
	Improved Theoretical Bandwidth and Capacity
	Improved Theoretical Hit Latency
	Simulators
	Simulated System Architecture
	Performance Benefit - Bandwidth
	Performance Benefit – Execution Time
	Conclusions
	References
	Outline
	Background
	Overview
	Contributions
	Motivation
	Stacked DRAM Variants
	Outline
	Benchmarks
	Outline
	Techniques for self-managed HBM cache
	Tag and data organizations
	Pseudo channel
	SALP (subarray level parallelism)
	SALP (subarray level parallelism)
	Future Work
	Outline
	Serial
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Parallel
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Latency Optimized
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Energy Optimized
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63

