
Taming Metadata Storms in
Parallel Filesystems with
MetaFS

Tim Shaffer

A (well-meaning) user tried to run a bioinformatics pipeline to
analyze a batch of genomic data.

Motivation

2

MAKER

Shared filesystem performance became degraded, with other users
unable to access the filesystem.

Motivation

3

MAKER

That user got a strongly worded email and had to stop their
analyses.

Motivation

4

MAKER

Certain program behaviors produce large bursts of metadata I/O
activity (e.g. library search).

These behaviors can occur at the same time across multiple
workers (e.g. startup, new analysis phase).

With a large number of nodes, the timing and intensity of metadata
activity align to overwhelm the shared FS.

Metadata Storm

5

Shared filesystems can scale up their metadata capacity.

Panasas, Ceph, etc. use multiple metadata servers to better
distribute the load.

General purpose solution

Existing Approaches/Related Work

6

Applications can use a metadata service layered on top of the
shared filesystem (e.g. BatchFS, IndexFS).

More efficient metadata management than the native filesystem.

Allows for client-side caching and batch updates.

Existing Approaches/Related Work

7

Changes to the filesystem interface that allow weaker consistency
or bulk operations

statlite and getlongdir system calls are examples.

This approach is not widely implemented.

Existing Approaches/Related Work

8

Spindle provides library loading as a service.

Hooks into the dynamic loader on each node and builds an overlay
network.

Nodes load shared objects by contacting each other rather than
reading from the shared FS every time.

Existing Approaches/Related Work

9

MAKER is a bioinformatics pipeline for analyzing raw gene
sequence data.

It builds an annotated genome database with information on
sequence repeats, proteins, etc.

http://www.yandell-lab.org/software/maker.html

Case Study: MAKER

10

http://www.yandell-lab.org/software/maker.html

MAKER presents a number of challenges at scale

▰ Large number of software dependencies (OpenMPI, Perl 5,
Python 2.7, RepeatMasker, BLAST, several Perl modules)

▰ Composed of many sub-programs written in different
languages (Perl, Python, C/C++)

▰ Installation consists of 21,918 files in 1,757 directories
▰ Unusual metadata load on shared filesystems
▰ Prone to causing a metadata storm

Case Study: MAKER

11

To help identify the causes of MAKER’s performance issues, we
used strace to record syscalls made during an analysis.

For each syscall, we captured the type, timestamp, and paths/file
descriptors used.

We also straced all children to capture sub-programs.

Profiling MAKER’s I/O Behavior

12

18212 1503501245.079960 read(3</lib64/libpthread-2.12.so>,
"\x7f\x45\x4c\x46\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x03\x00\x3e\x00\x01\x00\x00\x00"..., 832) = 832

Profiling MAKER’s I/O Behavior

13

Grouped relevant syscalls as

▰ data (read, readv, write, ...)
▰ metadata (stat, readdir, readlink, open, ...)

and by location

▰ Working directory (CWD)
▰ /tmp
▰ Shared FS
▰ Local system (/bin, /usr/...)

Profiling MAKER’s I/O Behavior

14

15

Access Mode I/O Ops Bandwidth (B)

CWD RW 257,060 1,435,228,808

/tmp RW 1,163,711 2,463,335,142

Shared FS RO 1,512,545 2,807,495,139

Local System RO 906,327 68,929,672

I/O Activity by Filesystem Location

16

Single-instance Metadata I/O

As suspected, MAKER causes large bursts of metadata activity.

Intermediate and output data contribute relatively little to metadata
activity over the course of an analysis.

Largest contributor is subprogram startup/library loading.

Metadata Performance

17

Panasas ActiveStor 16 filesystem

▰ 7 Director Blades + 70 Storage Blades
▰ Up to 84 Gb/s read bandwidth
▰ Up to 94,000 IOPS while reading data

We used a synthetic benchmark (ls -r in a directory tree with
74,256 files and 4,368 directories) to measure pure metadata
performance.

Shared Filesystem Performance

18

19

Running Times for Parallel Benchmark Instances

Parallel Instances Instance Running
Time (s)

Total Metadata I/O
Operations

Average FS MIOPS

1 13.7 179,091 13,038

4 22.6 716,364 31,664

8 41.9 1,432,728 31,194

16 86.1 2,865,456 33,262

24 130.6 4,298,184 32,916

To reduce shared FS load, we considered

▰ Local installation
▰ Disk image
▰ Containers (Docker, Singularity, ...)
▰ Filesystem overlay

These depend on availability at the site.

Possible Solutions

20

Software installation does not change during an analysis.

We can index the software installation metadata.

▰ Trade numerous metadata operations for a single file read
▰ Library is search handled locally

Idea: Metadata Index

21

We implemented MetaFS as a FUSE module for evaluating this
approach.

▰ Transparent overlay applied to an existing directory
▰ Easy to add/remove without modifying your scientific app
▰ Reads metadata index at startup and presents a read-only view

of the software installation

MetaFS

22

Normal Access

23

W

W

W

/scratch
├── dir1
│ └── file1
├── dir2
│ ├── file2
│ └── file3
└── dir3

010010
110010
...

101101
010101
...

010101
101010
...

1. Directory search

Normal Access

24

W

W

W

/scratch
├── dir1
│ └── file1
├── dir2
│ ├── file2
│ └── file3
└── dir3

2. Read data

010010
110010
...

101101
010101
...

010101
101010
...

Create Index

25

/scratch
├── dir1
│ └── file1
├── dir2
│ ├── file2
│ └── file3
└── dir3

1. Read metadata

010010
110010
...

101101
010101
...

010101
101010
...

Create Index

26

/scratch
├── dir1
│ └── file1
├── dir2
│ ├── file2
│ └── file3
└── dir3

Index

2. Write
Index File

010010
110010
...

101101
010101
...

010101
101010
...

Using MetaFS

27

W

W

W

/scratch
├── dir1
│ └── file1
├── dir2
│ ├── file2
│ └── file3
└── dir3

Index

MetaFS

MetaFS

MetaFS

1. Read index
(startup only)

010010
110010
...

101101
010101
...

010101
101010
...

Using MetaFS

28

W

W

W

/scratch
├── dir1
│ └── file1
├── dir2
│ ├── file2
│ └── file3
└── dir3

Index

MetaFS

MetaFS

MetaFS

2. Directory search

010010
110010
...

101101
010101
...

010101
101010
...

Using MetaFS

29

W

W

W

/scratch
├── dir1
│ └── file1
├── dir2
│ ├── file2
│ └── file3
└── dir3

Index

MetaFS

MetaFS

MetaFS

3. Read data

010010
110010
...

101101
010101
...

010101
101010
...

For the ls benchmark with MetaFS in place, running time was on
par with single-instance performance regardless of the number of
parallel instances.

We also ran MAKER with MetaFS in place over the software
installation directory.

MAKER requires no modification to run with MetaFS.

Evaluation

30

When starting, MetaFS reads the index file (~2 MB for MAKER’s
installation directory).

Metadata activity to the shared FS is significantly reduced at the
cost of a small increase in data transfer (index file).

No observed performance decrease due to FUSE.

Evaluation

31

32

Metadata Ops. Data Transfer (B)

ls 179,091 0

ls + MetaFS 8,738 4,900,655

MAKER 1,142,781 2,807,495,139

MAKER + MetaFS 14,726 2,809,472,114

Reduction in Metadata Load on the Shared Filesystem
with MetaFS

Based on the number of I/O ops. and the measured capacity of the
system, a single user would saturate the shared FS with an average
of 66 instances of MAKER running in parallel.

Bursty activity could reduce this limit further.

With MetaFS in place, we can remove this limit, allowing an
estimated 5,000 parallel instances (✱).

Scalability of MAKER

33

MetaFS significantly reduces the (often unnecessary) metadata I/O
encountered during program startup.

Local indexing is a lightweight approach: no changes to application
or infrastructure necessary.

A major challenge for users is identifying when to apply
optimizations. This is easy for software installations.

Conclusions

34

35

Tim Shaffer
tshaffe1@nd.edu

github.com/trshaffer

