
Toward Scalable Monitoring on Large-Scale 
Storage for Software Defined Cyberinfrastructure

Arnab K. Paul†, Ryan Chard‡, Kyle Chard⋆, Steven Tuecke⋆, 
Ali R. Butt†, Ian Foster‡ ⋆

†Virginia Tech, ‡Argonne National Laboratory, 
⋆University of Chicago



Motivation

Data generation rates 
are exploding

2

Complex analysis 
processes

The data lifecycle often 
involves multiple 

organizations, 
machines, and people



This creates a significant strain on 
researchers

• Best management practices 
(cataloguing, sharing, purging, etc.) 
can be overlooked.

• Useful data may be lost, siloed, and 
forgotten.

3

Motivation



Software Defined Cyberinfrastructure (SDCI)

4

Accelerate discovery by automating research 
processes, such as data placement, feature 
extraction, and transformation.

Enhance reliability, security, and transparency
by integrating secure auditing and access 
control mechanisms into workflows.

Enable data sharing and collaboration by 
streamlining processes to catalog, transfer, and 
replicate data.



Transform static data graveyards into active, responsive storage devices
• Automate data management processes and enforce best practices
• Event-driven: actions are performed in response to data events
• Users define simple if-trigger-then-action recipes
• Combine recipes into flows that control end-to-end data transformations
• Passively waits for filesystem events (very little overhead)
• Filesystem agnostic – works on both edge and leadership platforms

RIPPLE: A prototype responsive storage solution

5

Background: RIPPLE



RIPPLE Architecture
Agent: 

- Sits locally on the machine

- Detects & filters filesystem events

- Facilitates execution of actions

- Can receive new recipes

Service: 

- Serverless architecture

- Lambda functions process events

- Orchestrates execution of actions

6



IFTTT-inspired programming model: 

Triggers describe where the event is 
coming from (filesystem create 
events) and the conditions to match 
(/path/to/monitor/.*.h5)

Actions describe what service to use 
(e.g., globus transfer) and arguments 
for processing (source/dest
endpoints).

RIPPLE Recipes

7



RIPPLE Agent
Python Watchdog observers listen for events
- inotify, polling, for filesystem events (create, delete, etc.)

Recipes are stored locally in a SQLite database

8



Limitations

• Inability to be applied at scale

• Approach primarily relies on targeted monitoring 
techniques

• inotify has a large setup cost
• time consuming and resource intensive

• Crawling and recording file system data is prohibitively 
expensive over large storage systems.

9



Scalable Monitoring

• Uses Lustre’s internal metadata catalog to detect 
events.

• Aggregate the events and stream those to any 
subscribed device.

• Provides fault tolerance.

10



Lustre Changelog

11

• Sample changelog entries
• Distributed across Metadata Servers (MDS)
• Monitor all MDSs



Monitoring Architecture

12



Monitoring Architecture (contd.)

13

• Detection
• Collectors on every MDS
• Events are extracted from the 

changelog.



Monitoring Architecture (contd.)

14

• Detection
• Collectors on every MDS
• Events are extracted from the 

changelog.

• Processing
• Parent and target file identifiers (FIDs) are not useful to 

external services.
• Collector uses Lustre fid2path tool to resolve FIDs and 

establish absolute path names.



Monitoring Architecture (contd.)

15

• Aggregation
• ZeroMQ used to pass 

messages.
• Multi-threaded:

• Publish events to consumers

• Store events in local database 
for fault tolerance



Monitoring Architecture (contd.)

16

• Aggregation
• ZeroMQ used to pass 

messages.
• Multi-threaded:

• Publish events to consumers

• Store events in local database 
for fault tolerance

• Purging Changelog
• Collectors purge already processed changelog events to lessen 

the burden in MDS.



Evaluation

17

• AWS
• 5 Amazon AWS EC2 instance
• 20 GB Lustre file system
• Lustre Intel Cloud Edition 1.4
• t2.micro instances

• 2 compute nodes
• 1 OSS, 1 MGS, and 1 MDS

Testbeds



Evaluation

18

• IOTA
• Argonne National Laboratory’s 

Iota cluster
• 44 compute nodes

• 72 cores

• 128 GB memory

• 897 TB Lustre Store ~ 150 PB for 
Aurora

Testbeds



Testbed Performance

19

AWS IOTA
Storage Size 20GB 897TB
Files Created (events/s) 352 1389
Files Modified (events/s) 534 2538
Files Deleted (events/s) 832 3442
Total Events (events/s) 1366 9593



Event Throughput

20

• AWS
• Report 1053 events per second 

to the consumer.

• IOTA
• Report 8162 events/s

AWS IOTA
Storage Size 20GB 897TB
Files Created (events/s) 352 1389
Files Modified (events/s) 534 2538
Files Deleted (events/s) 832 3442
Total Events (events/s) 1366 9593



Monitor Overhead

21

Maximum Monitor Resource Utilization

CPU (%) Memory (MB)

Collector 6.667 281.6

Aggregator 0.059 217.6

Consumer 0.02 12.8



Scaling Performance

22

• Analyzed NERSC’s production 7.1PB GPFS file 
system

• Over 16000 users and 850 million files

• 36-day file system dumps.
• Peak of 3.6 million differences between two days

• ~ 127 events/s

• Extrapolate to 150PB store for Aurora
• ~ 3178 events/s



Conclusion

23

• SDCI can resolve many of the challenges associated 
with routine data management processes.

• RIPPLE enabled such automation but was not often 
available on large-scale storage systems.

• Scalable Lustre monitor addresses this 
shortcoming.

• Lustre monitor is able to detect, process, and 
report events at a rate sufficient for Aurora.



24

akpaul@vt.edu http://research.cs.vt.edu/dssl/

mailto:akpaul@vt.edu
http://research.cs.vt.edu/dssl/

	Slide Number 1
	Motivation
	Slide Number 3
	Software Defined Cyberinfrastructure (SDCI)
	RIPPLE: A prototype responsive storage solution
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

