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Abstract—Scientific discoveries are increasingly relying on
analysis of massive amounts of data. The ability to directly access
the most relevant data records through query, without shifting
through all of them becomes essential. However, scientific datasets
are commonly stored on parallel file systems and IO systems that
are optimized for reading/writing large chunks of data, and many
scientific datasets have spatial-temporal data similarity, such that
the records with similar values often locate in a close proximity of
each other. Therefore, our previous work started to investigate the
benefit of using block range index technique on HDF5 format files.
In this work, we implemented our block index technique into the
ADIOS I/O system by logically dividing the ADIOS storage blocks
into smaller partitions, and recording the minmax values from
each partitions as indexes. We studied how the data organizations
and IO optimization techniques in ADIOS will impact the query
performance of block index using a 3-dimensional S3D dataset.
Comparing to the existing minmax method in ADIOS, which only
records the minmax values per storage block, our evaluations
showed that we can achieve up to 3x speedup in query time,
and cause negligible overhead even in the worst case scenario.
Therefore, our study suggests block index could be an effective
technique for query, and its performance can be further improved
for ADIOS.
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I. I NTRODUCTION

Scientific applications can easily produce massive amount
of data in the order of terabytes, but only few data records
contain important events or critical information for scientific
discovery. Hence, instead of reading the entire datasets, index-
ing techniques are applied to accelerate query and reduce the
time for retrieving data records, such as variants of B-tree [5]
used in DBMS, bitmap indexes [18], and inverted indexes.
While these indexing techniques can deliver efficient query
performance to locate individual records, the computation
complexity and storage requirement of these indexes is known
to be expensive [11], [12].

On the other hand, scientific datasets are commonly stored
and managed by parallel file systems and IO libraries, such
as Lustre, HDF5, NetCDF and ADIOS [10]. To achieve
greater scalability and higher throughput, all these systems are
optimized for reading/writing large chunks of data block (i.e.
a set of contiguous records). Hence, accessing and retrieving
individual records cannot perform efficiently. Furthermore,
recent studies [1] have also shown that data layout and file
organization can also have significant impacts to query per-
formance and data retrieval time. Therefore, the performance

characteristics and behaviors of IO systems should be consid-
ered into the design of indexing methods as well.

Driven by the aforementioned problems, our previous
work [19] has exploit the idea of applying block range index
technique [8] for scientific datasets. Our implementation using
HDF5 library on Lustre file system showed that the indexing
technique can achieve comparable or better query performance
than FastBit [18] and SciDB [6], but only need much smaller
index size and index build time. In this work, we want
to further investigate the technique with other I/O systems.
Therefore, we implemented the block index technique into
the ADIOS I/O system [10], and demonstrated the query
performance improvement from using our technique in the I/O
system. We chose ADIOS for the integration and evaluation
of our method for three important reasons. Firstly, ADIOS
is a state of the art componentization of the IO system,
and it has been used by several scientific simulations [13],
including GTC, GTS, S3D, etc. It provides users the flexibility
to switch between different IO implementations through a
XML configuration file. Therefore, through this work, we can
make the block index technique become one of the query
optimization options for the community in the near future.
Secondly, ADIOS has implemented a minmax method that
simply records the min, max value from each writeblock (i.e.,
more details in Section II). However, the size of writeblock is
determined by the size of data of each process when the file is
created, and can be extremely big (∼ 2 to 5 GB) for optimizing
contiguous data read/write. Therefore, we want to investigate
how much query performance still can be gained from using
our method comparing to the existing implementation. Finally,
ADIOS is a I/O system with the capability of supporting in-
situ processing and analysis. Therefore, we believe our index
technique is well suited for the system, and this work allows
us to evaluate our technique for the in-situ applications in the
future.

Our contributions are summarized as below:

• Implement block index method into the ADIOS I/O
system, and evaluate our implementation on super-
computers.

• Compare our index technique to the existing min-
max method in ADIOS, and show our technique can
achieve achieves up to 3x speedup in query time.

• Analyze the data characteristics of several variables
from a real multi-dimensional S3D dataset. Our find-
ing confirms that scientific datasets, like S3D, are



suitable for using block index technique because they
often exhibit data distribution patterns where interest-
ing records locate in closer proximities.

• Identify a couple of performance problems that can
be further optimized in our implementation. One of
them is to balance the I/O requests among readers.
The other is to improve IO throughput by merging
blocks in close proximity.

The rest of paper is structured as follows. Section II briefly
introduces ADIOS. Section III describes the implementation
of our index technique in ADIOS. Section IV presents our
experimental results, and Section V is the related work. Finally,
the paper is concluded in Section VI.

II. ADIOS

ADIOS(Adaptive IO system) is a state of the art com-
ponentization of the IO system. It takes the implementation
of the IO layer away from the application scientist, and
provides users the flexibility to switch between different IO
implementations through a simple XML configuration file. Due
to its simplicity and portability, it has been used by several
scientific simulation codes, and many IO optimization modules
have been developed for ADIOS.

In ADIOS, a global array is consisted of many individual,
contiguous blocks written out by many writers. These blocks
are called thewriteblock, and its size is determined by the size
of data of each process when the file is created. Therefore, the
size of writeblock can be extremely big ( 2 to 5 GB), and it
is optimized for reading/writing large chunks of data block.

Besides having various read/write methods, ADIOS only
supports query API as an alternated way of creating the
selection of data reads. A query is an AND/OR tree of simple
variable-relation-value expressions, like ”x > 1.2 andy <
10”. The API returns a list of points(i.e., records) that satisfy
the expression as the result of a query evaluation. The list of
points can then be directly used in the read functions.

Because reading a list of points that scattered across dataset
one-by-one can easily cause significantly lower IO bandwidth.
Therefore, if a set of points needs to be read out from the same
writeblock, ADIOS will determine a contiguous bounding
box (i.e. compact ranges in all dimensions of a variable) that
includes all the points within the writeblock, and read out the
bounding box from file by a single IO request.

ADIOS also implemented a minmax method on writeblock
to accelerate query evaluation(i.e., but it has not been included
into the latest public release). The minmax method simply
records the maximum and minimum values from a writeblock
when the variable is created. The metadata is stored along
with data file, and is loaded into memory once the data file is
opened. During query evaluation, minmax method examines
the range of each writeblock based on the metadata in the
memory, and the IDs of writeblocks which contain hit records
are returned to user. To get the individual selected records from
each block, user will need to read the entire data block based
on the block ID, and then filter the results by evaluating the
query constraints. Although this method needs to read more
data, and adds an additional post-processing filtering step,
its overall query time can still be faster than the traditional

approach which evaluates query directly, and then retrieves the
selected data individually, like we have shown in our previous
study [19].

III. I MPLEMENTATION

As mentioned in the previous section, the minmax method
is tightly coupled with the writeblock data structure in ADIOS.
But writeblock is a static setting of block size that is deter-
mined by the amount of data written from process during
file creation, and optimized for large chunk sequential IO.
However, data access through query selection creates small
random scattered IO. As a result, minmax method ends up
retrieving too many data records which causes longer query
time. To address the issue, our block index implementation
extends the minmax method as follows.

For index procedure, we logically divide a writeblock
into smaller fixed-size partitions, and records the minmax
values of each partition. It is noted that creating logical
partitions on writeblocks is different from simply using a
smaller writeblocks size setting. This because using a smaller
writeblocks size will create more physical writeblocks, and
the IO throughput will drop significantly when more write
blocks are read from storage systems. On the other hand, using
logical partition can maintain the same number of writeblocks
on storage systems, and the IO requests on the same writeblock
can be merged by ADIOS to minimize IO contentions.

In our current implementation, the indexes are stored in
a separate index file. Since the index file is relatively small
comparing to the amount of data that needs to be retrieved
from query selection, loading the index file has limited impact
in our query performance evaluation. But in the future, we will
also implement it as the metadata (a list of minmax values) on
writeblocks, so that the indexes can be directly loaded from
memory as well.

For query procedure, we perform domain decomposition
to the dataset, and distribute the corresponding partitions to
processes for query evaluation in parallel. Each process inde-
pendently loads the minmax values of its partitions from the
index file, and identifies the partitions with hits by comparing
to the range of query constraints. A partition is the same
as a bounding box data selection in ADIOS, and it can be
specified by a pair of coordinates of opposite corners of the
bounding box. If contiguous partitions are selected, we can
directly merge them into a single bounding box. Hence, at the
end, our query API returns a list of coordinates that describes
the list of partitions with hits. Then the returned coordinates
can be used by processes independently to retrieve the data
records from their own subset of data using the ADIOS read
API.

As shown by our evaluation study, creating block in-
dex with a size smaller than the data storage size, such as
writeblocks, can provide several benefits. (1) The amount of
retrieving data is reduced, and so is the query time. (2) If the
block size is too small and cause inefficient IO, logical blocks
can always be merged together into a larger data chunk for
reading. In other words, the data read size can be dynamically
adjusted according to the query selection pattern. (3) Having
selected data scattered in more data partitions allows us to take
advantage of higher IO parallelism in reads, and balanced the



load among processes more evenly. Therefore, throughout our
implementation and evaluation, we analyze the performance
impact of these design decisions, and show the performance
of ADIOS minmax method can be improved substantially.

IV. EXPERIMENTAL EVALUATIONS

A. Experimental setup

We conducted our experiments on a large super computing
system called Edison at NERSC. We evaluated the query
performance of our implementation using a S3D dataset. The
dataset was generated from a turbulent combustion simulation,
and written into files through ADIOS. The dataset contains
three variables: ”temp”, ” wvel”, and ”pressure”. Each vari-
able is a three-dimensional double precision array with the
dimension length of 1100× 1080× 1408. The variables were
written to files using a writeblock size of 275× 270× 352 (i.e.
roughly 200 MB per writeblock). That means a variable is split
on all dimensions, and stored into 64 writeblocks. The data in
a writeblock is then serialized along the higher dimension first,
and stored on disks. Lustre is the parallel file system for the
supercomputer, and the file is stored using the maximum stripe
count 36 and default stripe size 1MB.

In the experiments, we compare our implementation to the
minmax method in ADIOS by reporting the query response
time. For both methods, the query response time includes the
time of scanning the index and retrieving the data blocks for
query evaluation, so the values of selected records are returned
to the applications. In this paper, we only show the query
evaluation results of ”temp” in Section IV-C∼Section IV-C due
to page limits. But other variables also had similar results.

B. Data locality of S3D dataset

Data locality can significantly affect the performance of
block index. For a dataset with good locality, data records
with similar values are also in close locations in the file. If the
locations of selected records are closer, a partition can contain
more selected records, so block index can retrieve them in a
single read without

First of all, we want to show that most of the real
scientific datasets, including S3D, is suitable of using block
index because they have stronger data locality, which means
the query selected data often locates in a close proximity
and can be retrieved together efficiently without accessing
too much redundant records. In the experiments, we evaluate
data locality by collecting the distances (i.e., in terms of
number of records) between every two neighboring hit records
according to their serialization order on storage devices. Then
we plot the cumulative distribution function of these distances
in Figure 1 from different variable and query selectivity. As
shown, distances between more than 99.9% of selected records
are just 1, which means those hits are contiguously located in
the dataset and can be retrieved together efficiently. However,
these records may not align to the boundary of a writeblock.
Therefore, as shown by our evaluation results in the rest of the
section, block index can still reduce the amount of retrieval
data significantly. We also observed that the selected records
become more scattered when the query selectivity increases.
Therefore, in Section IV-D, we found block index can take
advantage of locality of S3D dataset, and the performance
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Fig. 2. Execution time of block index and minmax under different partition
size settings.

TABLE I. IO STATISTICS FROM VARIED PARTITION SIZE SETTINGS

Partition size read requests bytes read I/O throughput
0.73MB 1298 941.17MB 753.76MB/s
3.63MB 266 964.38MB 852.84MB/s
7.98MB 124 989.03MB 867.29MB/s
18.12MB 59 1069.52MB 1141.22MB/s
39.88MB 30 1196.41MB 864.65MB/s
minmax 11 2193.42MB 1222.17MB/s

improvement is more obvious when the query selectivity is
smaller.

C. Performance under varied partition size

Here, we investigate how the size of partition can affect the
performance of block index. Figure 2 shows the execution time
of block index comparing to minmax under different partition
size settings. We conduct the experiment using ”temp” variable
with 1e-2 query selectivity. As shown by the figure, the best
partition size setting in this case is 18.12MB which gives
us the minimal execution time. To understand the reason for
achieving the best performance, we analyze the IO statistics as
shown in Table I. From the IO measurements, we can observe
the performance is a result of tradeoff between the read size
and IO throughput. When the partition size is increased, both
the number of read requests and the bytes read can be reduced
for saving data retrieving time. But at the same time, the IO
throughput is lower when the partition size is smaller due to
the constant latency overhead from each request. In comparing,
minmax method has the highest IO throughput, but its read
bytes is more than twice the block index. Therefore, overall,
block index is still faster than minmax method.

D. Performance under varied query selectivity

Figure 3(a) compares the query performance of block index
and minmax under different query selectivity settings using
the ”temp” variable. The partition size of block index is
18.3MB, which is the best setting as suggested by the analysis
results in Section IV-C. We can see that the execution time
of block index is less than or similar to minmax under all
cases, and the speedup improves from 1.07x to 2.8x as the
query selectivity decreases. As observed from IO statistics
summarized in Table II, we can see the performance of block
index is due to less amount of read bytes than minmax method.
When the query selectivity is 1E-2, minmax reads over 2GB
of data, while block index only reads half of it around 1GB of
data. But, when the query selectivity is reduced to 1E-6, block
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(b) ”wvel” variable.
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(c) ”pressure” variable.

Fig. 1. CDF of data locality of S3D dataset under different query selectivity. Data locality represents the distance to the next selected record.
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Fig. 3. Execution time and speedup of block index and minmax under
different query selectivity. Speedup is calculated as the execution time of
minmax divided by the execution time of block index.

index reads less than 1/5 of the data of minmax method. This
is due to the following two reasons.

First reason is that the minimum read bytes of minmax is
bounded by the size of writeblock which is around 200MB,
that is almost 10 times larger than the partition size (18.3MB)
used by the block index in this experiment. So block index
still can read less data when the query selectivity is smaller
than 1E-4. The second reason is as shown by the data locality
study in Section IV-B, the selected records are more scattered
when the query selectivity is higher. Therefore, block index
needs to retrieve more partitions that include more redundant
data.

We also found that even in the worst case when all the
data must be retrieve under 100% query selectivity, block
index still can have a similar performance as the minmax
method with negligible overhead. As shown in Table II, the
number of read requests from block index is more than 10
times to the minmax method, but surprisingly this didn’t cause
significant performance impact to the block index method.
This is because writeblocks are only logically partitioned by
our block index method, not physically. As mentioned in
Section II, ADIOS still can perform IO optimization internally,
such as buffering, to reduce IO contentions. As a result, block
index did not suffer from the increasing number of IO requests.
To verify our observation, we did an experiment to test the
query performance by setting the writeblock size to 18.3MB,
and found the data retrieval time becomes 2∼5 times slower.
Therefore, using a smaller writeblock size is different from
building a block index with smaller partition size in ADIOS.

TABLE II. IO STATISTICS FROM VARIED QUERY SELECTIVITY

SETTINGS

block index
query selectivity read requests bytes read I/O throughput

1 704 12761.72MB 2021.24MB/s
1E-1 70 1268.92MB 781.62MB/s
1E-2 59 1069.52MB 1141.22MB/s
1E-3 25 453.19MB 641.08MB/s
1E-4 5 90.64MB 292.99MB/s
1E-5 3 54.38MB 240.92MB/s
1E-6 2 36.25MB 168.83MB/s

minmax
query selectivity read requests bytes read I/O throughput

1 64 12761.72MB 1892.07MB/s
1E-1 12 2392.82MB 971.48MB/s
1E-2 11 2193.42MB 1222.17MB/s
1E-3 4 797.61MB 648.61MB/s
1E-4 1 199.40MB 329.10MB/s
1E-5 1 199.40MB 327.55MB/s
1E-6 1 199.40MB 318.97MB/s

E. Scalability & Load balancing issue

Finally, we evaluate the performance impact of using
varied number of cores for query processing. We conduct
the experiment using ”temp” variable with partition size of
18.3MB for the block index, and the query selectivity of 1E-
2. As expected, Figure 4 (a) shows the query execution time
for both methods reduces as more cores are given. However,
we found the improvement of block index is dimmish as the
scale increases. After further investigation, we found the reason
is because the load was not balanced among processes. This
is because in the current ADIOS implementation, there is a
fixed assignment between the writeblocks and the processes.
The data from a writeblock can only be read from its assigned
process. As a result, when the query selected data scattered
unevenly among writeblocks, some processes might read more
data than the others and become the performance bottleneck.

As shown in Figure 4 (b), the read bytes of the process with
the highest load didn’t decrease proportionally to the number
of cores. That implies the load didn’t evenly balanced among
processes when more cores are added. This is more likely
to happen in scientific datasets, because of the data locality
behavior we observed in Section IV-B. Due to this reason,
although the total read bytes of block index is always just half
of the minmax method, the maximum read bytes of a single
process eventually became the same and so did the query
performance. This results indicate load balancing is crucial
to the query performance of block index. Since not all the
applications using ADIOS require a fixed assignment between
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Fig. 4. Execution time and maximum read bytes per core of block index
comparing to minmax.

writeblocks and processes, we suggest to redistribute the data
that needs to be retrieved among processes for achieving
better performance for both methods. We also expect this
load balancing method can benefit the block index more than
minmax method. This is because the size of a block partition
is much smaller than the size of a writeblock, and therefore
the load can be balanced more evenly.

V. RELATED WORK

A variety of indexing techniques are available in popular
database systems [16], many of which are variations of the
B-Tree [5]. The B-Tree data structure is designed to update
quickly as the underlying data records are modified. But
scientific data is mostly accessed in read-only manner, and thus
bitmap index is a more appropriate indexing structure [15],
[17]. A number of different strategies have been proposed
to reduce the sizes of bitmap indexes and improve their
overall effectiveness. A state-of-art bitmap index technique
is FastBit [18], and its parallel implementation FastQuery [4]
has shown the capability of indexing and analyzing of trillion
particle datasets [2]. However, building these complex data
structures is time consuming and the size of indexes is too
large to fit in memory. Therefore, these indexing techniques
usually happens at data load steps of database systems [1],
and the indexes are stored in files for repeated usage.

Recently, there were several attempts that design new
indexing technique to reduce the index size based on data
compression and reorganization. ISABELA [12] adapts B-
splines curve fitting to compress data, and guarantees a user-
specified point-by-point compression error bound by stor-
ing the relative errors between estimated and actual values.
DIRAQ [11] exploits the redundancy of significant bits in
the floating-point encoding among similar values, and uses
a compressed inverted index to reduce index size. However,
data query is only a part of a data analysis workflow. Hence
reorganizing and encoded data may have severe impacts to
other processing steps.

Finally, our implementation of the block index is a variation
of the block range index(BRIN) technique proposed by Herrera
in 2013 [8]. This technique is intended to enable very fast
scanning of extremely large tables. Since the implementation
of this technique is tightly coupled to the underlying storage
and IO systems, only ProstgreSQL has announced this feature
in their products [8]. Other vendors have only described similar
features, such as the storage index of Oracle [14] and Hive [9],
the zone maps of Netezza [7]. Other recent studies [19], [3]
have shown such technique is suitable for scientific datasets,

because of the data locality from the spatial-temporal data
similarity in these datasets.

VI. CONCLUSIONS

In this work, we implemented the block index technique
into the ADIOS I/O system, and evaluated its query per-
formance on a 3-dimensional S3D dataset. From our study,
we have the following findings. First, we observed the query
performance of minmax method in ADIOS is limited by the
size of writeblock which is optimized for contiguous data
read/write not for random query access. By building a block
index that logically partitions a writeblock, we showed that the
query time can be improved due to less data reading, and more
flexible read size. Second, we analyzed the query performance
under various settings, including query selectivity, computing
scales, and block size. The results showed that block index can
consistently deliver better performance, and the improvement
is even greater under smaller query selectivity. Finally, we
found scientific datasets, like S3D, often exhibit stronger
data locality, such that interesting records locate in a closer
proximity to each other. Hence, using block index technique
can effectively reduce the amount of retrieval data in query.

In the future, we would like to further improve the query
performance in ADIOS by balancing the data retrieval work-
load across readers. Also we will conduct more performance
analysis and modeling of IO systems, so that we can design
the algorithms to decide the proper block size and request
merging condition. Finally, we will implement the indexing
steps into the ADIOS system as well, and evaluate the overhead
and benefit of our technique for in-situ processing and data
analytic.
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