
Partially-Decompressible Dictionary Based
Compression Format for All Flash Array

Yosuke Oyama
Tokyo Institute of Technology

oyama.y.aa@m.titech.ac.jp

Hiroki Ohtsuji, Jun Kato, Kosuke Suzuki, Mitsuru Sato, Eiji Yoshida
FUJITSU LABORATORIES LTD.

I. INTRODUCTION

The demand for managing a huge amount of data, so-called
“big data”, has been increasing in all kinds of fields. All Flash
Array (AFA) is a possible solution to face this difficulty, since
it provides high-bandwidth and low latency data management
with several SSDs and computational resources. The most
troublesome problem of exploiting AFA is that each SSD has
upper limit of writing times, which shortens the lifespan of the
flash memory cells. Data compression techniques can reduce
the amount of data to write and solve the lifetime problem.

In order to improve the compression ratio, data blocks
should be compressed in bulk to leverage inter-block common
features. However, partial read requests are problematic be-
cause existing compression methods do not support the partial
decompression feature. Without this feature, storage systems
are required to decompress entire compressed blocks to read
any fraction of data. We propose a dictionary coding based
compression technique, which can leverage the benefit of the
bulk compression method and support the partial decompres-
sion feature. This characteristic provides competitive decom-
pression speed with the case that each block is individually
compressed.

II. PARTIALLY-DECOMPRESSIBLE DICTIONARY BASED
COMPRESSION FORMAT

Our proposed format is based on LZ4 [1], a fast LZ77-
like compression format. LZ4 finds duplicated data literals in
a sliding window and keeps only the unique data for data
compression. The partial decompression feature is achieved
by modifying the sliding window mechanism (Fig. 1). With
this mechanism, repeated data occurrence can refer either
occurrence on the present block or that on the head block,
therefore inter-node occurrences is expected to be compressed
for the former case, locally occurrences for the latter case.
In addition, when referring the front block, the length of
the sandwitched blocks is subtracted from the original offset,
hence all offsets of the proposed format can be fitted into 64
KB, which is equals to the size of the original LZ4 offset
format.

The proposed format requires the decompression process to
read at least two blocks, however it takes less computational
cost than the naive bulk compression format.

8KB block	

First occurrence	

Repeated occurrence (match)	

Referred occurrence	

X	

Sliding window at position X	

Fig. 1. Proposed Partially-Decompressible Sliding Window Technique

III. EVALUATION

We compared the compressed block size and the decom-
pression speed of the proposed format with those of the case
that each block is compressed with LZ4 individually (Fig.
2). The evaluated machine has one Intel Xeon CPU E5-
2697@2.70GHz, and all blocks are placed on the memory. We
arbitrarily set up eight CentOS 7.2 with various applications,
and combined VDI files to create one testing data. Note that
the blocks of the testing data are deduplicated, consequently
the entire size is reduced from 4 GB to 770 MB.

The average compressed size of the proposed format gets
the minimum size of 3.73 KB, which is 0.88x of individually
compressed size, 4.25 KB. On the other hand, if blocks are
sorted randomly average compressed size is 4.29 KB, which
is worse than the individual case.

The average decompression speed of one block in four
blocks group is 0.85x of the individual case. This performance
degradation is expected to be smaller than the case of the naive
bulk compression.

Number of blocks

A
v
er

ag
e 

co
m

p
re

ss
ed

b
lo

ck
 s

iz
e 

[K
B

]

Proposed

method

Proposed

method
(Front block only)

Individual

D
ec

o
m

p
re

ss
io

n
 s

p
ee

d
 [

M
B

/s
]

Fig. 2. Average Compressed Block Size (Left) and Decompression Speed
(Right)

REFERENCE

[1] Y. Collet. Lz4 - extremely fast compression.
https://github.com/Cyan4973/lz4.


