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Abstract—In modern HPC systems, parallel (distributed) file
systems are used to allow fast access from and to mass
storage infrastructure. However, they are bound to static and
predefined application demands. Since the amount of data
required by scientific applications grows and the methods to
access the data change, an additional migration of data between
the parallel file system and the compute nodes is unavoidable.
As a result, the I/O subsystem becomes progressively more the
bottleneck of the whole HPC system. With ADA-FS, we design
and develop an infrastructure for intelligent I/O planning
and data staging at extreme scales by utilizing idle storage
subsystems on compute nodes for ad-hoc job-temporal file
systems. In this position paper, we show how various required
components and information, such as a system’s topology,
interact and how the ad-hoc file system works. We present
and evaluate early prototypes of these components and explore
design properties of modern and future pre-exascale systems.

1. Introduction

Today’s HPC systems utilize parallel file systems
that comply with POSIX semantics, such as Lustre [1],
GPFS [2], or BeeGFS [3]. Despite separating data and
metadata to improve performance, metadata performance
cannot scale by adding more hardware to the storage
subsystem and, therefore, is much harder to tackle. In the
past, research and development on parallel file systems
focused on increasing the bandwidth of read and write
operations in a parallel manner. Still, this I/O bottleneck is
present today. Moreover, parallel file systems (and their I/O
subsystem) are often shared by many users and their jobs.
Consequently, bad behaving applications can result in poor
performance affecting all users.

In February 2014, The Advanced Scientific Computing
Advisory Committee (ASCAC) released a report about the
top 10 challenges towards developing exascale systems [4].
One of them is the creation of a management software
which is able to handle the volume at an adequate speed
and can cope with the diversity of anticipated data. Hence,
exascale systems are going to need storage systems that are

able to scale in many directions. Building exascale systems
with technologies available today would mean to invest a
tremendous amount of hardware.

Many of the recently announced large scale HPC sys-
tems (for example AURORA [5], Sierra [6], and Summit [7])
will offer node local storage ranging from SSDs, through
NVRAM, to high bandwidth local persistent storage. The
ADA-FS project is aiming at a solution where this node
local storage is used to create an on-demand private parallel
file system, created exclusively for a single job, and removed
after it finished. As a result, we expect much more efficient
I/O patterns to a shared global file system assuming that
the bottleneck is the aggregate link bandwidth between the
compute nodes and the global parallel file system or the
global file system itself. In this paper, we are going to
describe our expectations from exascale machines and how
our project will help to reduce the the bottleneck between
very fast node local storage and a slower global parallel file
system.

First, we depict related work on the previously men-
tioned topics in Chapter 2. In Chapters 3 and 4, we de-
scribe the components of our project and show with small
benchmarks how our concept could help with future exascale
systems. Chapter 5 discusses how our approach should
behave on future exascale systems and which parts needs
to be considered compared with today’s supercomputers.
In Chapter 6 we introduce we plan to collect resource
information on heterogeneous systems. We discuss exist-
ing solutions for gathering static resource information and
briefly present our architecture. Finally, we will conclude
our work in Chapter 7.

2. Related work

In this section, we explore design properties of an-
nounced pre-exascale and state of the art systems. In ad-
dition, we evaluate modern solutions of four critical aspects
that we aim to improve.

State of the art. Planned future pre-exascale system are
announced with node local storage for caching of files or
using it as a extended memory. Due to dropping hardware



prices in the recent years, more and more HPC solutions
utilize small SSDs in their compute nodes. Thus, a lot of
systems have a break-even point where the combined local
I/O capabilities of some nodes exceed those of the global
file system. Table 1 shows an expected extrapolation of

TABLE 1. TODAY AND FUTURE HPC SYSTEMS

HPC system # compute nodes Total I/O in
GiB/s (S)

Caching bandwidth in
GiB/s (C)

Break-even point
P ∗ = S/C

HRSK2 at TUD 2,014 80 0.5 160
ForHLR II at SCC 1,172 50 0.5 100
TITAN ar ORNL 18,688 240 0.5 480
Aurora at ANL >50,000 1,000 1.6 640
Summit at ORNL >3,400 1,000 1.6 640

S: Total global parallel storage bandwidth
C: Node local storage conservative speed assumption
P ∗: Break-even point: ad-hoc storage is as fast as the total I/O

the break-even point for the I/O bandwidth. HRSK2 at TU
Dresden and ForHLR II [8] are mid-ranged HPC systems,
both using the Lustre parallel file system, are equipped
with SSDs in their compute nodes. The upcoming Summit
HPC System [5] was announced with NVM-e like SSDs
and the Aurora System [7] will use some kind of local high
bandwidth (persistent) memory. Both systems are planned
with a global parallel file system bandwidth of 1 TiB/s. On
the other hand, the interconnect bisection bandwidth was an-
nounced with 500 TiB/s in Aurora, offering 500 times more
bandwidth within the compute nodes compared to the global
file system. Hence, we can assume that the interconnect is
not a bottleneck in our application. Considering the break-
even point P ∗ = S/C, where the average bandwidth is equal
to the interconnect bandwidth within a job, all jobs with
P > P ∗ may achieve better performance in our approach.
If a job is asking for less nodes, it would not reach the break-
even point but it would also not have to share the private
parallel file system with other jobs. While we assume that
the hardware, regarding to compute node local SSDs and the
interconnect, is going to be fast enough for our approach, we
have to design high-performing and easy to use software to
make the local storage usable. For this, ADA-FS evaluates
aspects from the research areas of data-aware scheduling,
parallel file systems, and monitoring.

Data-aware Scheduling and data-staging. In the past,
Monti et al. [9] have shown that HPC systems will benefit
drastically if the data staging process is included in the
scheduler’s decision, i.e., moving computing resources to
the corresponding data or vice versa. The Parallel Runtime
Scheduling and Execution Controller (PaRSEC) is an archi-
tecture aware scheduling framework developed at the Uni-
versity of Tennessee at Knoxville [10]. The Hobbes Project
at Sandia National Labs has a similar component [11].
Data staging also reached commercial products, such as the
MOAB workload manager. However, the above mentioned
solutions are only covering single aspects of data scheduling.

Parallel and ad-hoc file systems. In recent years,
several parallel file systems have evolved. Unfortunately,
the capabilities of these systems struggle at extreme scales,
resulting in poor performances for accessing applications.
One common bottleneck is the available bandwidth and the

Figure 1. Overview of ADA-FS

interface of storage and compute nodes in which the bisec-
tion bandwidth grows at a faster pace than the bandwidth to
the file system. Another observable obstacle in production
systems are single, I/O intensive jobs, able to severely
disrupt other applications that access the same file system.
Some parallel file systems, such as Spectrum Scale with its
File Placement Optimizer (FPO) try to mitigate these issues
by using local compute node SSDs as a buffer for the global
file system. However, neither of these solutions offers a way
to stage-in data to a buffer or on-demand file system before
a job start.

Data management. Existing data staging solutions, e.g.
MOAB, require users to manually specify the amount of
stage-in and stage-out data to receive an estimation for the
scheduling time. This is problematic because of two reasons:
First, it is hard (and often impossible) to know how much
data is needed and produced from a particular job. Second,
giving a precise estimation of scheduling time is not only
depended on the amount of data but also on the number
of files. Metadata intensive workloads are known to cause
significantly higher load on the storage subsystem with less
data compared to data intensive workloads.

Monitoring. An important aspect for our approach
is monitoring and resource discovery. The DARSHAN
project [12] has established methods for analyzing
I/O requests in a holistic way in an HPC storage
environment. Hwloc is a set of tools to collect local resource
information [13]. The LIKWID performance monitoring tool
suite is also able to gather topological information of the
system [14] by using hwloc. Global network information can
be collected by directly using tools tailored for a certain kind
of network, for example ibroute and ibnetdiscover
tools from the OFED distribution [15] for InfiniBand
topologies.

3. Setup of the ADA-FS Project

ADA-FS is sponsored by the German Research Foun-
dation within the priority program “Software for Exascale
Computing”. The goal is to develop an ad-hoc file system
with an integrated data scheduler that uses the local I/O
capabilities of those compute nodes that a job allocates but



still integrates with the globally shared parallel file system.
Thus, each job gets its own parallel file system without
the need to share resources. We plan to to offer an on-
demand private parallel file system, exclusively created and
tailored to a single job, by utilizing available local com-
pute node storage. Additionally, we develop efficient data-
aware scheduling techniques to stage-in data before they
are required for computation. Figure 1 shows an overview
of the components (dashed rectangles) of ADA-FS. All of
our components are intended to work together with existing
HPC system components, such as resource managers or
schedulers.

Data manager. The data manager will be responsible
for data scheduling. When data is moved through an HPC
system, methods are needed to track this movement. We
are going to introduce the concept of workpools, which
are similar to the workspaces in workspace++ [16]. This
will virtualize the actual data location on the file system.
The data can be staged anywhere and the user locates the
workpool with a command line interface. Existing solutions
neither offer information about the amount of data per
workspace nor have staging capabilities.

Data Staging. The process of data staging will be
transparent for a end-user. Based on the changes a job made
in its local temporary file system, the data is staged-in and
staged-out by this component whenever the data manager
assigns a time slot for this action.

Bootstrap ADA-FS. This component spawns and man-
ages the requested ad-hoc file system. In our approach,
an ad-hoc file system has to be available and accessible
only for the job duration. The ad-hoc file system does not
need the same fault tolerance as the global file system, but
should be resilient against single node failures. In this early
stage of the project, the bootstrap is launched by a prologue
program before a job starts and is going to be as generic as
possible to work with any batch system. It is supplied with
all information for the needed ad-hoc file system which is
created by utilizing either BeeGFS or IBM Spectrum Scale.

ADA-FS. Parallel file systems, such as IBM Spectrum
Scale [2] and Lustre [1], are POSIX compliant to support a
wide range of scenarios. However, it is known that providing
full POSIX compliance hurts parallel I/O performance. As a
result, some parallel file systems, e.g. Ceph-FS [17], are able
to relax POSIX semantics for specific operations to improve
performance. We plan to extend this idea and remove partic-
ular POSIX rules where feasible. For example, we assume
that each file/object is only accessed by a single application
(in parallel from multiple nodes) at a time. Consequently,
consistency has only to be ensured within the jobs’ nodes.
Further, we expect that known problematic operations, for
example ls -a, are not performed during an application
run.

Monitoring and topology discovery. In order to allo-
cate the required resources for an ad-hoc file system, it is
essential to provide vital information, such as the static com-
position and topology of the system as well as the dynamic
resource usage. As an input for the data staging component,
the resource and topology information are necessary. We

are going to build these on top of existing frameworks.
Moreover, monitoring of the ad-hoc overlay file system and
the I/O behavior of parallel applications is done to optimize
I/O planning and data placement.

4. Initial Benchmarks

To evaluate boundary conditions and to assess the as-
somptions from Table 1 we performed initial benchmarks for
a few aspects of ADA-FS. These were done on 256 nodes
of the ForHLR II system. Each node has 64 GiB memory,
2 Intel Haswell Xeon E5-2660v3 (10 cores), and a local
SSD with approximately 400 MiB/s write performance. As
the experiment was executed on a production system, we
created a file on each node and associated a loop device
to the file. The loop device was given to the tested file
systems (BeeGFS and IBM Spectrum Scale) directly. We
will only show a few results here. In the case of BeeGFS, we
created and mounted a file system on the loop device. First,
we analyzed how fast file systems can be deployed on the
compute nodes and evaluated the bandwidth with the iozone
benchmark. Table 2 indicates that the startup time increases
with the number of nodes. While the startup times might be
acceptable on smaller HPC systems, they are not feasible
in massive systems and at extreme scales. An integration
into the resource manager prologue would shorten this time.
Additional metadata experiments were performed with the

TABLE 2. BEEGFS STARTUP AND THROUGHPUT

Nodes 8 16 32 64 128 256

Startup (s) 10.21 16.75 29.36 56.55 152.19 222.43
Shutdown (s) 11.90 12.13 9.40 15.96 36.13 81.06
Throughput (GiB/sec) 2.79 6.74 10.83 28.37 54.06 129.95

Throughput test: iozone (3.46) with one process/node

mdtest benchmark [18], showing that IBM Spectrum Scale
performs better for metadata intensive operations. However,
IBM Spectrum Scale was harder to integrate into such an
dynamic environment as BeeGFS, which contains a tool that
supports an easy deployment.

Another relevant component, whose performance char-
acteristics are of interest, is fuse (file system in user space)
which comes with its own kernel module and a corre-
sponding user space library. Fuse allows an lightweight
integration of new storage concepts or file systems without
the need to write a kernel module. Thus, it provides a natural
starting point for the development of the ad-hoc file system.
However, working with fuse seems to increases the number
of context switches significantly. For instance, an I/O system
call, such as the open() operation, will initially always
call the Virtual File System (VFS) in the kernel. Afterwards,
the VFS passes the request to the fuse kernel module and
sends it back to the libfuse library and to the application
implementing the fuse file system.

To quantify this impact, we employed a pass-through file
system with fuse1 which prepends the root of the fuse file

1. https://github.com/ada-fs/ptfs



system to the path and calls the corresponding underlying
system call. A self-written microbenchmark mounts the
ramdisk as root of our fuse file system and writes data using
dd to it. Table 3 shows the average bandwidth, total time and
context switches, for an execution of the micorbenchmark
with fuse and without fuse. The values in Table 3 are the
accumulated average of multiple runs. We can see that the
bandwidth and the total execution time of the benchmark is
5 times higher when running without fuse compared to runs
with a fuse file system, increasing the number of context
switches by a factor of 2000.

TABLE 3. FUSE MICROBENCHMARK

Benchmark Bandwidth in MiB/s Total time in s # context switches

Fuse on RAMDisk 474 22.64 4,385,395
Plain on RAMDisk 2,400 4.49 1,697

Accumulated average bandwidth, total execution time, and number of
context switches for the dd microbenchmark on a plain tmpfs and
through a fuse pass-through file system.

This indicates that reusing a native parallel file system
has severe performance advantages but also drawbacks in
terms of development and management. Nonetheless, we
argue that the advantages of using a fuse file system out-
weigh the performance issues. As part of our project, we will
further analyze fuse’s behavior in more detail and optimize
our setup to mitigate the performance impact of fuse.

5. Projections towards exascale

In the future, the performance gap between the global
parallel file system, the network between the compute nodes,
and node local I/O devices is going to increase. For exam-
ple, the Aurora HPC system will have 500 TiB/s bisection
bandwidth and only 1 TiB/s bandwidth to the file system.
Also, new technologies, such as NVRAM or persistent local
memory, are will be used in HPC systems. Thus, we expect
ad-hoc file systems to perform well on exascale systems. By
design, the file system will be independent of the number
of nodes that it runs on since the distributed meta data and
deployment process can be parallelized.

The huge increase in the size and and complex topol-
ogy hierarchy of supercomputers makes it very difficult
to predict a scheduling algorithm and its performance. As
those existing algorithms have to evolve or completely has
to be developed from scratch, our approach will have a
small impact on the scheduling. Data staging is only adding
another factor onto the scheduling.

In terms of collecting resource information, we do not
expect issues in future exascale systems. Local resources
can be collected as it is done today in parallel on all nodes.
Global connection information are most probably available
within the batch system, network routing, or management
software. The latter has many ways to adapt to changes
in the system configuration. Our approach will help to
close the increasing bandwidth gaps by intelligently using
all available resources in modern as well as future HPC
systems.

6. Collection of Resource Information

As mentioned before in Chapter 3, detailed information
of hardware resources and the network topology of a sys-
tem is important in our approach. Only with appropriate
information about the used underlying storage technology
and corresponding bandwidths of the communication and
storage networks, the data manager will be able to make
the right decisions. In this section we describe what kind of
resource information is of interest and depict possible ways
to gather this information. Furthermore, we will discuss the
architecture of a tool that we build to gather the relevant
resource information for ADA-FS.

First, we distinguish between static and dynamic re-
source information. At its core, static resource information
describes components that do not change frequently and are
often similar between nodes. This includes the number of
CPU cores, the amount of main memory, and cache sizes
etc. of a single node. Because it is unlikely that this kind
of hardware is replaced frequently, it is not necessary to
update this information before each job. However, dynamic
resource information describes the utilization of the static
resources, e.g. the average load on the storage or the commu-
nication network. The difference between static and dynamic
resources gives an estimate of the available resources that
can be used by ADA-FS.

For static resource information, we started to implement
a system-map tool which provides a map of parts or the
whole HPC system. This information can be queried by
the data manager directly. As described in Section 2, there
are already several tools which gather information about
the topology and hardware resources of a system. Hwloc
provides many output formats and supports a wide range
of architectures. lstopo collects node local information
about NUMA domains, memory, and cache sizes. In addi-
tion, PCI-Express sockets and devices are collected as well.
Additional information, e.g. file systems mounted on these
block devices or available partitions, are not discoverable
with this approach.

Therefore, we are extracting information from the
procfs and sysfs pseudo-filesystems to learn about the
number of partitions, appropriate sizes, mountpoints, and
the used file systems, for example. Moreover, we plan
to gather network topology information for InfiniBand
networks by utilizing the well known ibroute and
ibnetdiscover tools from the OFED distribution [15].
Hence, we have designed an extensible architecture for our
system-map tool. Each resource of interest will be utilized
by a so called extractor. Figure 2 shows a schematic
UML-diagram of two extractors from our system-map
tool. An extractor module has an abstract part, which
defines the structure of the data that will be gathered and
a specialized part which implements the logic to read
the data from a certain source, by overriding the abstract
interface. In Figure 2, the Filesystem_Extractor
and the Disk_Extractor are examples of the abstract
parts. The Linux::Filesystem_Extractor and the
AIX::Filesystem_Extractor are the specialized



Figure 2. Simple UML-Diagram for two example extractor modules of our
system-map tool.

parts for extracting information of mountpoints and
partitions of a specific system. If a specific source is
available on a system the appropriate extractor will be
used to extract the information. This is useful because the
same information may be available on different systems
through different sources. With this architecture, we are able
to implement specialized extractor modules for different
sources resulting in an equivalent representation of the data
for our tool. All kinds of post-processing after gathering
the information can rely on a defined representation of the
data. That gives us the opportunity to support different
output formats or query interfaces for other components of
ADA-FS at a higher level of the tool. Since hwloc is good
for getting CPU and cache topology information, we add
an extractor which uses hwloc particularly for this kind of
information. The ADA-FS sysmap topology discovery is
work in progress while we are also working on integrating
network topology discovery to make bisection bandwidth
calculations possible.

7. Conclusion

Within the ADA-FS project, we will create job local
file systems that exploit the I/O capabilities of the compute
nodes in current and exascale HPC systems. This allows
users to run I/O intensive jobs in parallel, but isolated.
With our approach idle times of resources for applications
involving massive amounts of data will be reduced. We have
already developed some prototypes of the needed compo-
nents: an ad-hoc file system, a data manager, a data staging
component, and a monitoring service. As this project is work
in progress, some components, such as the algorithms for
the data scheduler, still need to be researched. In the future,
we are going to tightly couple and integrate all parts of our
system, test and mature the components.
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