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Abstract—The scale of scientific data generated by experi-
mental facilities and simulations on high-performance computing
facilities has been growing rapidly. In many cases, this data
needs to be transferred rapidly and reliably to remote facilities
for storage, analysis, sharing etc. In many cases, users want
to verify the integrity of the data by doing a checksum after
the data has been written to disk at the destination, to ensure
the file has not been corrupted, for example due to network or
storage data corruption, software bugs or human error. This end-
to-end intergrity verification creates additional overhead (extra
disk I/O and more computation) and increases the overall data
transfer time. In this paper, we evaluate strategies to maximize the
overlap between data transfer and checksum computation. More
specifically, we evaluate file-level and block-level (with various
block sizes) pipelining to overlap data transfer and checksum
computation. We evaluate these pipelining approaches in the con-
text of GridFTP, a widely used protocol for science data transfers.
We performed both theoretical analysis and real experiments to
evaluate our methods. The results show that block-level pipelining
is very effective in maximizing the overlap between data transfer
and checksum computation and can improve the overall data
transfer time with end-to-end integrity verification by up to 70%
compared to the sequential execution of transfer and checksum,
and by up to 60% compared to File-level pipelining.

Keywords - High-performance data transfer; Data in-
tegrity; Pipelining

I. INTRODUCTION

The scale of scientific data generated by experimental facil-
ities and simulations on high-performance computing facilities
has been growing rapidly. For example, in cosmology Dark
Energy Survey (DES) telescope in Chile captures TBs of data
per night, another cosmology project Square Kilometer Array
will generate an exabyte every 13 days when it becomes
operational in 2024. DOE light source facilities generate 10s
of TBs of data per day now and is poised to increased by two
orders of magnitude in the next few years. The Compact Muon
Solenoid (CMS) experiment is one of the four detectors located
at the LHC [1]. It is designed to record particle interactions
occurring at its center. Every year, CMS records and simulates
6 petabytes of proton-proton collision data to be processed and
analyzed .

These large datasets are often transferred over wide-area
networks for diverse purposes such as storage, analysis and
visualization. When moving large quantities of data across end-
to-end storage system-to-storage system paths, it is essential
to do end-to-end checksum verification. Even though some of
the components in the end-to-end path implement their own
data integrity check, it is not sufficient. For example, TCP in
the network communications implements the TCP checksum
[2] and storage controllers in data storage systems implements

their own data integrity methods [3]. But these are not suffi-
cient for two reasons: 1) it does not cover the complete end-
to-end path of the data transfer and 2) probability of integrity
failure increases exponentially with multiple components (a
transfer involving 10 components each with their own integrity
check that captures 99% data corruption would result in 10%
(1− .9910) undetected data corruption).

In addition, J. Stone et al [4] showed through extensive real
experiments that TCP checksum is not enough to guarantee the
end-to-end data integrity. A 16-bit checksum means that 1 in
65,536 bad packets will be erroneously accepted as correct.
According to [5], around 1 in 5,000 Internet data packets
is corrupted in transit. Thus, around 1 in every 300 Million
(65K*5K) packets is accepted with corruption. It has been
reported that an average of 40 errors per million transfers is
detected on data transferred by the D0 experiment [6]. Projects
such as DES require verification of checksums as part of their
regular data movement process in order to catch file corruption
due to software bugs or human error.

While end-to-end data integrity check is essential in big
data transfer, it does not come for free. It creates additional
overhead in terms of disk I/O and computation and thus,
increases the overall data transfer time. Based on the tests
we conducted with Globus [7] and the analysis of GridFTP
transfer logs of some sites indicate that the checksum overhead
can be anywhere between 30% and 100%. In this work, we
evaluate file-level and block-level (with various block sizes)
pipelining strategies to overlap data transfer and checksum
computation. We conduct both theoretical analysis and exper-
iments on real testbeds to evaluate these strategies. File-level
pipelining is employed in production data transfer mechanisms
such as Globus. To the ebst of our knowledge, block-level
pipelining in an end-to-end fashion is employed in practice
for large-scale file transfers. Our results show that block-
level pipelining is very effective in maximizing the overlap
between data transfer and checksum computation. Block-level
pipelining can improve the overall data transfer time with end-
to-end integrity verification by up to 70% compared to the
sequential execution of transfer and checksum, and by up to
60% compared to File-level pipelining, for synthetic datasets.
For a real science dataset, the improvement is up to 57%
compared to the sequential execution and 47% compared to
File-level pipelining.

The rest of the paper is organized as follows. In Section
II, we present the related work on high-performance data
transfer and associated data integrity issues. In Section III,
we describe pipeline approaches to optimize high-performance
data transfer with end-to-end data integrity check. In Section
IV, we present experimental results on real testbeds to evaluate
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the effectiveness of the pipeline approaches. We conclude with
the brief summary of the work and future work in Section V.

II. RELATED WORK

Many tools have been developed for file transfers –
GridFTP [8], Globus file transfer [7], bbcp [9], FDT [10],
XDD [11] to name a few. A number of approaches have been
proposed to optimize large-scale wide-area data transfers. [12]
proposes an algorithm that dynamically schedules a batch of
data transfer requests to minimize the overall transfer time.
The use of multiple TCP streams and concurrent file transfers
is often required in order to achieve file transfer rates close
to network speeds [13] [14]. Kettimuthu et. al incorporated
on-the-fly checksum capabilities in GridFTP but it is not true
end-to-end in the sense that it does not account for any data
corruption in the path from the destination host to the storage
system. To address the need for end-to-end checksum as well
as to address the limitations of 16-bit TCP checksum, Globus
transfer service incorporated an additional 128-bit checksum
computation (reduces the number of undetected bad packets to
one in 2 ∗ 1013) by reading the file at the destination after it
is written to the disk. Globus supports file-level pipelining of
transfer and checksum by overlapping the checksum computa-
tion of a previously transfered file with the transfer of another
file for multi-file transfers. We evaluate this approach in our
work in addition to the block-level pipelining of transfer and
checksum computation, which is not currently employed for
production science data transfers, to the best of our knowledge.

III. PIPELINING DATA TRANSFER AND END-TO-END DATA
INTEGRITY CHECK

In this section, we describe our methods for high-
performance end-to-end data integrity check.

A. Pipelining

Pipelining is a useful parallelizing technique to improve
the repetitive tasks composed of multiple steps. We make use
of this pipelining technique to achieve high-performance data
transfer with data integrity check, which is composed of a data
transfer operation and a data integrity check operation. Figure
1 shows the illustrative example of pipelining data transfer and
data integrity check. T represents data transfer. C represents
data integrity check.
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Fig. 1: Pipelining data transfer and data integrity check

File-level pipelining vs. block-level pipelining. File-level
pipelining overlaps a file transfer and a file integrity check

while block-level pipelining overlaps a block (whose size is
less than the average file size in a dataset) transfer and block
data integrity check. Theoretically, the pipelined operations
work best when all the operations take the same time. In
other words, the performance of the pipelined operations are
bottlenecked by the longest operation. Considering the two
operations, i.e. data transfer and data integrity check, the
executions times vary depending on platforms. For example,
the data transfer time may be longer than the data integrity
check time in case of slow network connections, and the data
integrity check time may be longer in case of high-speed
network connections and low-end (or highly loaded) CPU
and/or storage-system. Block-level pipelining can reduce the
gap between the data transfer time and data checksum time
because file-level pipelining overlaps two operations for two
different files. Suppose that 10MB file transfer is overlapped
with the data checksum for the previous file of size 10GB or
vice versa. The gap between transfer time and checksum time
could be huge in this case. This problem can be resolved in
block-level pipelining where the gap (e.g. difference of data
transfer time for 10MB and data checksum time for 10MB if
the block size is 10MB.) is always constant.

Analytical Modeling. We analyze the performance of
block-level pipelining using data transfer time and data check-
sum time. We can model the performance of the block-level
pipelining for two cases: 1) when data transfer time is longer
than checksum time (Transfer-Dominant Case), and 2) when
data checksum time is longer than checksum time (Checksum-
Dominant Case). Based on tests, we found that both transfer
time and checksum time (md5sum) are a linear function of
data size in a relatively contention free environment.

Since it is hard to analytically model the performance of
a dataset consisting of multiple random files, we generate two
extreme cases of synthetic datasets having distintive file size
patterns, a dataset consisting of twenty 10GB files (20-10G)
and a dataset consisting of ten repetitions of a 10GB file and
a 500MB file (10G-500M). We use these two datasets, i.e. 20-
10G and 10G-500M, to perform analytical modeling. We also
experimentally evaluate the performance for these datasets and
verify that the results are in line with the analytical models.

For mathematical analysis, we define t and c as follows.

• t: Transfer time of 500MB data

• c: Checksum time of 500MB data

For our experiments, we deliberately chose two different test-
beds one in which the transfer time is dominant and one
in which the checksum computation time is dominant. So,
we have separate analytical models for these two cases as
summarized in Table I. Note that we transfer the whole file of
500MB files in case of 100G-500M dataset even with 100MB
block size while transferring 10GB files in 100MB blocks.
Each model is generated based on the number of pipeline
stages in each case and execution time for each stage, both
of which are decided by the number of blocks and the times
of each block over 500MB.

B. Enhancing Block-level Pipelining

Judging from the analytical performance modeling of the
block-level pipelining and general pipelining behaviors, the
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TABLE I: Comparison of analytical performance models of 1) block-level pipeline, 2) file-level pipeline, and 3) sequential file
transfer (existing method for baseline)

Case Dataset
Block-level Pipeline

File-level Pipeline File Sequential
100MB 500MB 1GB 2GB

Transfer-Dominant 20-10G 400 × t + 1/5 × c 400 × t + c 400 × t + 2 × c 400 × t + 4 × c 400 × t + 20 × c 400 × (t + c)

t > c 10G-500M 210 × t + c 210 × t + c 210 × t + c 210 × t + c 200 × t + 201 × c 210 × (t + c)

Checksum-Dominant 20-10G 400 × c + 1/5 × t 400 × c + t 400 × c + 2 × t 400 × c + 4 × t 400 × c + 20 × t 400 × (c + t)

t < c 10G-500M 208 × c + 51/5 × t 210 × c + t 210 × c + 2 × t 201 × c + 40 × t 200 × t + 201 × c 210 × (c + t)

best performance can be achieved when the data transfer
time is close to the data checksum time. Hence we explore
opportunities of making two times as close as possible.

In Checksum-Dominant case, we can make two times
close by reducing the data checksum time. We use multiple
threads (and cores) to compute checksums of multiple parts
of a block in parallel. In Transfer-Dominant case, even though
one could reduce the transfer time by compressing the data
size of a block, it is not straightforward as the compression
ratio depends on the dataset and algorithm used. In this work,
we reduce the gap between block transfer time and block
checksum time for Checksum-Dominant cases by parallelizing
the checksum computation. Use of compression to reduce the
gap between block transfer time and block checksum time for
Transfer-Dominant cases could be a subject for future work.

IV. EXPERIMENTAL EVALUATION

In this section, we describe our testbeds for real data
transfer tests, and present experimental results followed by in-
depth discussion on them.

A. Experimental testbeds

We conducted sequential file transfer (baseline), file-level
pipeline data transfer, and block-level pipeline data transfer
while varying block size on two different clusters at Argonne
National Laboratory – Cooley at the Argonne Leadership Com-
puting Facility (ALCF) and Rains at the Joint Laboratory for
System Evaluation (JLSE). Cooley is Checksum-Dominant and
Rains is Transfer-Dominant. Both clusters have parallel/shared
file systems, i.e. GPFS, as storage systems. We picked two
nodes (one sender and one receiver) on each cluster to run our
tests.

1) Cooley (Checksum-Dominant Case)

Cooley [15] is a analysis and visualization cluster at
ALCF

A node in Cooley, a cluster of 126 nodes, has the
following hardware configuration.

• Architecture: Intel Haswell
• Processors: Two 2.4 GHz Intel Haswell E5-2620

v3 processors per node (6 cores per CPU, 12 cores
total)

• Memory/node: 384GB RAM per node, 24 GB
GPU RAM per node (12 GB per GPU)

• Network: 10Gbps
• FDR Infiniband interconnect for GPFS

2) Rains (Transfer-Dominant Case)

A node in Rains testbed, a cluser of 16 nodes, has the
following hardware configuration.

• Architecture: AMD Opteron
• Processors: Four AMD Opteron 2216 processors

per node (2 cores per CPU, 8 cores total)
• Memory/node: 8GB
• Network: 1Gbps
• 20 Gb DDR InfiniBand interconnect for GPFS

B. Evaluation methodology

We used GridFTP as a data transfer tool for our exper-
iments. Our method will apply to other data transfer tools
without loss of generality. Globus transfer service [7] and
globus-url-copy are the commonly used clients for GridFTP.
Both of them support only file-level checksum. We use the
latter for our tests. We simulate both file-level checksum and
block-level checksum by separate threads running linux system
command md5sum. We verified that the performance of built-
in checksum in globus-url-copy is close to that of linux system
command md5sum.

Experimental datasets. We generated three synthetic
datasets to evaluate the performance of different data transfer
methods.

1) 10G-500M dataset: Dataset with 10 10GB files and 10
500MB files, 105G in total.

2) 20-10G dataset: Dataset with 20 the same size of 10GB
files, 200G in total.

3) Real dataset: Dataset generated based on the distribu-
tion of Intergovernmental Panel on Climate Changes
(IPCC) Coupled Model Intercomparison Project 3 (CMIP-
3) dataset, 174G in total.

The first two datasets, 10G-500M and 20-10G, represent
the extreme cases to show the effects of pipelining methods.
The real dataset is used to evaluate the performance of pipelin-
ing methods for real-world use cases. 10G-500M dataset is
composed of files with only two sizes, one is large, the other
one is small. This kind of dataset will get the most benefit
from block-level pipeline. 20-10G dataset is composed of files
of the same size where the block-level pipeline should have
little benefit over file-level pipeline. Real dataset is composed
of files with size ranging from few MBs to few GBs. The
performance of block-level pipeline should be in between of
10G-500M dataset and 20-10G dataset.

For all experiments, we measured the performance of
sequential file transfer, file-level pipeline transfer, and block-
level pipeline transfer with block sizes of 100MB, 500MB,
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Fig. 2: Performance comparison of sequential file transfer, file-
level pipeline transfer, and block-level transfer on Cooley

1GB and 2GB. For the real dataset, we used block sizes of
50MB, 100MB, 500MB and 1GB. The reason is that file size
in the real dataset varied a lot from 10MB to 2.1GB with 1/3
of files less than 50MB and only a few files are larger than
2GB.

We used the partial file transfer feature in GridFTP to
do block-level transfers, which introduces startup (connection
setup, additional protocol, and TCP ramp-up) overhead for
transferring each block. In practice, block-level pipeline will
be done inside the data transfer tool and will not result in a
separate startup overhead for each block. Thus, we remove the
additional startup overhead for block-level transfers. In order
to do so, we measured the startup overhead on two testbeds,
Cooley and Rains, based on the following methodology:

T1: Time for transferring 20 blocks of the same size, e.g.
500MB. T2: Time for transferring one file with size of 20
times of the block size, (e.g. 10GB= 500MB × 20).

Startup overhead = (T1− T2)/19 (1)

C. Block-level pipelining

1) Results on Cooley (Checksum-Dominant Case, t < c):
On Cooley testbed, we measured t ≈ 0.5 secs, c ≈ 1
secs. Analytical performance can be obtained as follows. After
substituting t with value 0.5 and c with value 1 in the formulas
in Table I, we can calculate the approximate performance
gain of block-level pipelining over file-level pipelining and
file sequential transfers. For dataset 20-10G, the maximum
performance gain over file-level pipelining is around 10 sec-
onds; For dataset 10G-500M, the maximum performance gain
over file-level pipelining is around 80 seconds. Compared to
file sequential transfers, the performance gain is around 200
seconds and 100 seconds respectively for 20-10G and 10G-
500M datasets.

Figure 2 shows the performance of sequential, file-level
pipeline and block-level pipeline (for different block sizes) for
different datasets on Cooley. The results are consistent with the
theoretical analysis: For dataset 10G-500M, the performance
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Fig. 3: Performance comparison of sequential file transfer, file-
level pipeline transfer, and block-level transfer on JLSE

gain of block level pipeline over file-level transfers is around
100 seconds (or ∼30%); For dataset 20-10G, there is little
performance gain (less than 10 seconds); For real dataset, the
performance gain percentage (∼16%) is in between the other
two datasets. The block size of 100MB is the best for all
three datasets. And the performance seems to degrade with
increasing block size with the exception of 1GB performing
better than 500MB for 20-10G dataset. We suspect that the
reason for this is: the transfer time is not perfectly linear with
respect to the dataset size (and same is the case for checksum
computation time too) and the overlap between the transfer
time and checksum computation time is best for the block
size of 100MB.

2) Results on Rains (Transfer-Dominant Case, t > c): On
Rains testbed, we measured t ≈ 7 secs, c ≈ 1 secs. Analytical
performance can be obtained as follows. After substituting t
with value 7 and c with value 1 in the formulas in Table I,
we can calculate the approximate performance gain of block-
level pipelining over file-level pipelining and file sequential
transfers. For dataset 20-10G, the maximum performance gain
over file-level pipelining is around 20 seconds; For dataset
10G-500M, the maximum performance gain over file-level
pipelining is around 200 seconds. Compared to file sequential
transfers, the performance gain is around 400 seconds and 200
seconds respectively for 20-10G and 10G-500M datasets.

Figure 3 shows the performance of sequential, file-level
pipeline and block-level pipeline (for different block sizes) for
different datasets on Rains. The results are consistent with the
theoretical analysis: For dataset 10G-500M, the performance
gain of block-level pipeline over file-level pipeline is around
280 seconds (∼22%); For dataset 20-10G, there is little
performance gain (less than 10 seconds); For real dataset,
the performance gain percentage (∼14%) is in between the
other two datasets. With a significant gap between the block
transfer and block checksum times, we do not expect any
significant difference in performance between different block
sizes. From Figure 3, it can observed that this is in fact the case
for 10G-500M and 20-10G datasets but for the real dataset,
the performance if 1G block size is worse than the others. It
requires further investigation.
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Fig. 4: Comparison of the performance of 1-Checksum-Thread and 2-Checksum-Thread on Cooley

3) Results on Cooley: The results of the previous exper-
iments have shown that block-level pipeline transfer is an
effective method to achieve high-performance transfer with
data integrity check. But we could not achieve perfect pipeline
yet due to the difference between block transfer time and block
checksum computation time. For instance, the transfer time is
half of the checksum time on Cooley.

Now, we want to see the impact of the perfect pipeline. In
order to achieve perfect pipeline between block transfer and
block checksum computation, we parallelized the checksum
computation using 2 threads (cores). We have two checksum
threads – one responsible for computing the checksum of first
half of a block and the other responsible for computing the
checksum of second half of a block. Figure 4 shows perfor-
mance comparisons between 1-Checksum-Thread case and 2-
Checksum-Thread case. It shows that the execution time of 2-
Checksum-Thread is almost half of the 1-Checksum-Thread in
most block-level cases in each dataset except for the smallest
block size (where the overhead of using 2 threads possibly
dominates). In 2-Checksum-Thread case, 500MB block size is
clearly the best for all three datasets (Please note that 500MB
block size is last but one bar for the real dataset and last
but two bar for the other two datasets). It is because the
number of threads for checksum computation is picked in
such a way to get complete overlap for the 500MB block
size. And the 500MB block size gets almost a linear speedup
with 2 threads. Others block sizes get significant performance
improvement with 2 threads for checksum computation as
checksum computation dominates the transfer time in this
testbed.

4) Results on Rains: Unlike the Cooley testbed, the Rains
testbed is dominated by the transfer time. Based on the results
on Cooley, we believe that similar performance gain can be
achieved if we can reduce the transfer time (by compressing

the data in advance of transferring over the networks) to match
the checksum computation time. We need to take into account
the additional compression step in pipeline for performance
improvement, given that enough CPU resources are available,
if the data is readily compressible, similar performance gains
as in case of the cooley testbed should be achievable.

V. CONCLUSION AND FUTURE WORK

The work presented in this paper is an initial summary
of our current work on block-level pipelining to overlap
data transfer and checksum computation. Through theoretical
analysis and experiment results, we showed that block-level
pipeline is an effective approach to optimize data transfers
with end-to-end integrity checking. The results are promising.
We showed that block-level pipeline can improve the overall
data transfer time with end-to-end integrity verification by
up to 57% compared to the sequential execution of transfer
and checksum, and by up to 47% compared to file-level
pipelining for a real science dataset. The results obtained
provides motivation to explore more optimized methods based
on current work. As we can see from the above experiment
results, the performance of block-level pipelining varies for
different block sizes. In addition, as the 2-Checksum-Thread
experiment results indicate, highest performance gains can be
achieved when the transfer time and checksum time match (or
very close to each other). We plan to study how to determine
appropriate block size, data integrity algorithm (Besides MD5,
other data integrity algorithms such as CRC [16], adler32
[17] are used for wide-area data transfers), data compression
methods, number of threads to use for checksum computation
and/or compression based on the environment and dataset.
Some of these choices (for e.g., block size) may have to be
varied dynamically during the transfer.
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