
MPI-IO In-Memory Storage with the Kove XPD
Julian Kunkel

Deutsches Klimarechenzentrum
Hamburg, 20146

Email: kunkel@dkrzde

Eugen Betke
Deutsches Klimarechenzentrum

Hamburg, 20146
Email: betke@dkrz.de

Abstract—Many scientific applications are limited by
the performance offered by parallel file systems. SSD
based burst buffers provide significant better perfor-
mance than HDD backed storage but at the expense of
capacity. Clearly, achieving wire-speed of the intercon-
nect and predictable low latency I/O is the holy grail of
storage. Throughput and latency of in-memory storage
promises to provide optimal performance that exceeds
performance of SSD based solutions. Kove R©’s XPD R©

offers pooled memory for cluster systems. Albeit the
system offers various APIs to acess this memory such
as treating it as a block device, it does not allow to
expose it as a parallel file system that offers POSIX or
MPI-IO semantics.

In this paper, we 1) describe the XPD-MPIIO-driver
which supports the scale out architecture of the XPDs.
This MPI-agnostic driver enables high-level libraries
(HDF5, NetCDF) to utilize the XPD’s memory as stor-
age. 2) A thorough performance evaluation of the XPD
is conducted using IOR, this includes scale-out testing
of the infrastructure and ”metadata“ operations, and,
finally, by comparing performance to a state-of-the art
Lustre system. We show that the driver and storage
architecture is able to saturate wire-speed of Infiniband
(60+ GiB/s with 14 FDR links) while providing low
latency and little performance variability.

I. Introduction

The dilemma of the conventional high-performance stor-
age systems is that they must maximize the bandwidth to
reduce application runtimes and at the same time they
shall minimize the available bandwidth to reduce costs.
The first requirement is often prioritized to the detriment
of the second one, which typically ends up in the oversizing
and in a low average usage of the expensive bandwidth.
The prioritization is motivated by the large performance
peaks, that often occur in large-scale applications.

Traditional parallel file systems can be deployed on
SSDs instead of HDDs, increasing performance for ran-
dom workloads. Typically, data is accessed via POSIX
interfaces but can be accessed using MPI-IO [1]. MPI-IO
is a widely accepted middleware layer for parallel I/O
that relaxes the POSIX semantics and is designed for
parallel I/O. In an alternative storage architecture, a burst
buffer [2], [3] is placed between compute nodes and the
storage. Acting as an intermediate storage tier, it’s goal is
to catch the I/O peaks from the compute nodes. Therefore,
it provides a low latency and good bandwidth to the

compute nodes, but also utilizes the backend storage by
streaming data constantly at a lower bandwidth.

In-memory systems, like the Kove R© XPD R© [4], provide
better latency, endurance and availability as flash chips.
Thus, the address space of the XPD could be used to
deploy an extreme fast parallel file system. Many of the
current MPI-IO implementation are optimized for the
conventional storage and their I/O behavior is well under-
stood, but in-memory systems deserve a thorough analysis.

Our contributions are: 1) we provide an MPI-IO
implementation for the XPD 2) we investigate the per-
formance of the developed MPI-IO driver.

While the large and scale out storage provided by the
XPD is valuable by itself, the driver can be considered as
an intermediate step towards a burst buffer solution.

This paper is structured as follows: Section II discusses
related work, then Section III and IV describe the used
API and MPI-IO implementation, Section V and VI show
the test setup and performance results. Finally, the paper
is summarized in Section VI.

II. Related Work

For flash based SSDs many vendors offer high-
performance storage solutions, for example, DDN Infi-
nite Memory Engine (IME) [5], IBM FlashSystem [6] and
Cray’s DataWarp accelerator. Using comprehensive strate-
gies to utilize flash chips concurrently, these solutions
are powerful and robust to guarantee availability and
durability of data for many years.

Many existing workloads can take benefit of a burst
buffer as fast write-behind cache. IME, for instance, offers
to serve as a burst buffer for a storage backend allowing
to transparently migrate data from flash to traditional
parallel file system. In [7], a user-level InfiniBand-based file
system is designed as intermediate layer between compute
nodes and parallel file system. With SSDs and FDR
Infiniband, they achieve on one server a throughput of
2 GB/s and 3 GB/s for write and read, respectively.

The usage of DRAM for storing intermediate data is not
new and ramdrives have been used in MSDOS and Linux
(with tmpfs) for decades. However, offered RAM storage
was used as temporary local storage and not durable and
usually not accessible from remote nodes. Exporting tmpfs
storage via parallel file systems is not new but without

flushing data to a backend. Wickberg and Carothers in-
troduced the RAMDISK Storage Accelerator [8] for HPC
applications. It consists of a set of dedicated nodes that
offer in-memory scratch space. Jobs can use the storage
to prefetch input data prior job execution or as write-
behind cache to speedup I/O. A prototype with a PVFS-
based RAMDISK improved performance of 2048 processes
compared to GPFS (100 MB/s vs. 36 MB/s for writes).
Burst-mem [9] provides a burst buffer with write-behind
capabilities by extending Memcached [10]. Experiments
show that the ingress performance grows up to 100 GB/s
with 128 BurstMem servers. In the field of big data, in-
memory data management and processing has become
popular with Spark [11]. Now there are many software
packages providing storage management and compute en-
gines [12].

The Kove XPD [4] is a robust scale-out pooled memory
solution that allows to aggregate multiple Infiniband links
and devices into one big virtual address space that can
be dynamically partitioned. Internally, the Kove provides
persistency by periodically flushing memory with a SATA
RAID. Due to the performance differences, the process
comes with a delay, but the solution is connected to a
UPS to ensure that data becomes durable in case of a
power outage. While providing many interfaces, the XPD
does not offer a shared storage that can be utilized from
multiple nodes concurrently.

III. XPD KDSA API
The XPD KDSA API is a low-level API that allows to

send and receive data using write/read calls by utilizing
RDMA. Data can be transferred synchronously or asyn-
chronously, additionally, memory can be pre-registered for
use with the Infiniband HCA. Since registration of memory
is time consuming, for unregistered memory regions the
system may either use an internal (pre-registered) buffer
and copy the user’s data to the buffer, or for larger accesses
it registers the memory, performs an RDMA data transfer
and then unregisters the memory again.

To address a XPD volume as a virtual address
space, the XPD uses a connection specifier in the form:
<local address>/<server>.<link>:<volume ID>. Mul-
tiple volumes and client or server links can be aggregated
by adding them with a +, data is then striped across these
volumes/links. Similar to parallel file systems, this allows
to scale the number of connections with the requirements.
Upon connecting to a XPD, a thread is spawned per
volume to drive the I/O, flags can control its behavior.
To improve latency, this thread can use spin locks to wait
for requests and transfer the data or it conserves CPU time
by only becoming active upon events. The latter option is
chosen as default for the MPI wrapper.

IV. XPD-MPIIO-Driver
The driver is implemented as a shared library and

usable with any MPI. It can be selected at startup of an

application using LD PRELOAD with the shared library.
All implemented routines check the file name for the prefix
“xpd:”. Without the prefix, they route the accesses to the
underlying MPI. Thus, files can be selectively stored on
XPD volumes. The code is available as open source1.

The file driver implements important functions uti-
lizing the relaxed consistency semantics offered by
MPI-IO: MPI File open, close, delete, get position,
get size, preallocate, read at, write at, read at all,
write at all, read, write, seek, set size, set view and
sync. Collective read/write are calling the independent
counter part. The selection is inspired by the needs of
HDF5 and IOR.

The implementation comes with a few limitations: Since
we do not know the memory regions, the KDSA calls
for unregistered memory are used implying overhead as
described above. During the open/close the Infiniband
connections to the XPD’s are established and destroyed.
This causes additional overhead but offers the freedom to
choose the volumes on a file basis. Views support derived
data types only partially, yet.

Internally, the file driver uses the shared memory space
provided by one or multiple XPD volumes. It records the
actual file size at the beginning of this memory region but
cannot grow beyond the aggregated size of the volumes.
Each process tracks its view of the file size and exchanges
this information upon file close or flush as needed by MPI-
IO semantics. The data space is not initialized with zeros,
which is an issue if files are written in a sparse format.
Since for many use cases, the file is completely overwrite,
this is not a show stopper. A formatting tool is contained
in the repository that initializes file size (alternatively call
MPI file delete()) or completely zeroes memory regions.

V. Test Setup
A. Testsystems

The tests with the XPD were run on Cooley, the visual-
ization cluster of Mira on ALCF. It provided three XPD’s
with a total of 14 FDR connections. Each node is equipped
with one FDR HCA.

To investigate the difference between XPD and other
state-of-the-art HPC systems, we run several benchmarks
on DKRZ’s supercomputer Mistral. Mistral hosts 3000
compute nodes each equipped with an FDR interconnect
and a Lustre storage system with 54 PByte capacity. The
peak transfer rate of the file system we used is 450 GiB/s2.

B. Benchmarks
As a benchmark, IOR [13] is used varying access gran-

ularity, processes-per-node, nodes, XPD connections and
access pattern (random and sequential). In all cases MPI-
IO with independent I/O is measured. IOR is used with a
transfer size equal to the access granularity and 20 GiB of

1http://github.com/JulianKunkel/XPD-MPIIO-driver
2http://www.vi4io.org/hpsl/2016/de/dkrz/lustre02

data per XPD connection (and volume)3. To synchronize
the measurements and capture time for open, close and
I/O separately, inter-phase barriers are turned on (IOR
option -g). For the Lustre benchmarks we were trying
to reuse the XPD parameters wherever possible. Collec-
tive buffer was enabled for write operations smaller than
512 KiB, we configured MPI-IO to use one aggregator per
node and, in all cases the number of stripes was twice as
much as the number of nodes.

VI. Evaluation
The goal is to systematically investigate the scaling

behavior of the Kove XPD’s. The following investigations
are made: 1) scaling on 14 nodes with increasing number
of connections, 2) scaling clients for 14 connections, 3)
variability of performance, 4) time for open/close. Addi-
tionally, a comparison to DKRZ’s Lustre is made. Since
the storage capacity is rather small compared to the
speed of the tests, the time for open/close are investigated
separately: In average, the time for open/close reduces the
reported performance by 10%. However, for production
runs, larger capacities are assumed, reducing this over-
head. Therefore, the performance reported subsequently
in this paper is reported without the open/close time.

Note that while we measured sequential and random
I/O, they behave similarly due to the DRAM storage and,
thus, we only report random I/O for the XPD.

A. Scaling the number of clients
In this first experiment, the maximum number of avail-

able volumes and IB links available are used (14).
Figure 1 shows the achieved performance for 1 to 98

client nodes and 1 to 12 processes per node (performance
between 3 and 12 PPN is between the measurements). Un-
der optimal conditions, the performance should increase
linearly from 1 to 14 nodes as each is equipped with one
IB FDR HCA and then saturate the network.

Observations: 1) read/write behave mostly symmet-
rically, i.e., good read performance implies good write
performance, 2) performance increases nearly with the
number of client nodes and then saturates, but with
PPN=1 it scales beyond 14 client odes, 3) for small access
granularities, the workload is dominated by the latency of
IB and the compute overhead, thus, it improves beyond
14 client nodes and using more PPN. 5) for large access
granularities, a high percentage of peak is achieved quickly.
Overall, 14 nodes with 12 PPN saturate at least 50% of the
available network throughput and 24 clients reach almost
peak. 6) performance of 100 KByte accesses is higher than
for 1 MiB in many cases, this is due to the pre-registered
memory region inside the KDSA library. This buffer is
used for small accesses but not for 1 MiB. Therefore, the
overhead for memory registration is added which slows
down the I/O.

3The memory capacity of the XPD’s is shared amongst all users,
therefore, we had to deal with 20 GiB and 14 volumes.

(a) Read

(b) Write

Figure 1: Performance overview: varying client node count
and PPN. The graph contains fitting curves for 100 KiB
and 1 MiB blocks.

(a) Granularity: 16 KiB (b) Granularity: 100 KByte (c) Granularity: 10 MiB

Figure 2: Read performance with variable connections and PPN. Isolines for multiples of 5k MiB/s are shown.

Figure 3: MPI-IO opening times for 14 XPD connections
including fitting curves for PPN ∈ {1,2,3,5,8,12}

B. Scale out with multiple connections
To show the scale out behavior, the performance when

varying PPN and the number of XPD connections has
been measured for the fixed configuration of 14 client
nodes (that should be theoretically be able to saturate all
XPD connections). Figure 2 shows a heat-map for different
block granularities. This gives us also another perspective
to investigate scaling behavior with the PPN. In the best
case, performance increases linearly with the number of
connections and is constantly at a high level for variable
numbers of PPN.

Observations: 1) for large accesses the performance
isolines show that about 5 GB/s are achievable per connec-
tion up to 5 connections regardless of the PPN. 2) starting
with 6 connections, multiple PPN are needed to drive I/O
and the scaling is not optimally any more. Still, as seen
in Figure 1, more PPNs and about 24 client nodes would
increase throughput to 60 GiB/s. 3) smaller granularities
also yield good performance with PPN=1, but the hill like
structure shows that multiple PPNs are necessary to drive
the latency bound I/O. Overall, the system scale well when
increasing the number of XPD connections/machines.

C. Opening/closing of files
Each client process establishes its own connections to

all XPDs specified in the connection string, thus, the open
time is expected to depend on the number of nodes, PPN,

and connections. In Figure 3, the observed time for the
open (connecting) for all experiments with 14 connections
is shown, close is faster. Up to the 100 nodes, the time
is below 2s and 0.5s for open and close, respectively. As
expected, it increases with PPN (and connections) but it
does not increase much with the client nodes.

D. Comparison to Lustre
The MPI-IO performance for Lustre is shown in Fig-

ure 4. Luste uses 64 OSS and 128 OSTs in contrast to
the three XPDs. Observations: read scales well with PPN
and the number of nodes – except that performance drops
when using two nodes instead of one. Write is similarly
regardless of PPN. Reported values seem appropriate for
random workloads as the currently best observed per-
formance has been achieved during acceptance testing
with sequential I/O of 2 MB blocks: with 256 nodes and
PPN=16, 65k MiB/s and 122k MiB/s for write and read,
respectively.

In Figure 5, the time for opening a shared file is shown.
With 96 nodes and PPN=12, mean open time is 0.125 s
and 0.061 s for write (i.e., create) and read, respectively
this is about 1 tenth of the opening time for the XPD
with 14 connections. Open time increases linearly with
the number of nodes and PPN. In the same configuration,
close time is lower with 0.025 s.

E. Performance variability
The variability of access time has been investigated.

When re-running an experiment, the overall performance
of a repeated run exhibits a similar performance. With
the three repeats of all runs, the arithmetic mean value
of runtime variability (min−max

max) is 1.23% for read and
1.78% for write accesses, albeit the mean runtime of an
experiment was only about 10s.

The density (like a fine-grained histogram) of measuring
timing of 10,000 individual I/Os with a single process is
shown in Figure 6. The graph shows the quality difference
between the Lustre on DKRZ and the XPD. As suggested
by comparing application runs, the XPD’s performance
does not vary much between individual I/Os. While some
reads in the optimized sequential I/O can perform as fast

(a) Read

(b) Write

Figure 4: Lustre performance: varying client node count
and PPN. Values for other PPN are in between.

Figure 5: Lustre opening times including fitting curves for
PPN ∈ {1,2,3,5,8,12}

(a) 1 MiB sequential read

(b) 1 MiB random read

Figure 6: Density of timing individual I/O operations

as on the XPD – i.e., with wire speed, most operations
do not and, obviously, random I/O is significantly slower.
Actually, for 16 KiB sequential reads, the read-ahead and
write-behind strategy of Lustre results in slightly faster
performance than the XPD (not shown).

VII. Summary

Storage on XPDs significantly outperforms our Lustre
system in the small-blocks random I/O benchmarks. In
this case and in contrast to XPD, the increasing number
of nodes and processes don’t provided the desired scaling
effect. The performance benefit of the XPD is smaller
when we use large granularities. From these results, it ap-
pears that this wrapper can be used to support I/O heavy
workloads. In the future, we will improve the file views
supporting all NetCDF scenarios, evaluate real application
workloads, check the tuning options of the XPD for the
MPI wrapper and provide asynchronous flushes for burst-
buffer scenarios.

Acknowledgment

Thanks to Kove for their support and discussion. Thanks
to our sponsor William E. Allcock for providing access and
feedback. This research used resources of the Argonne Lead-
ership Computing Facility, which is a DOE Office of Science
User Facility supported under Contract DE-AC02-06CH11357.

References
[1] R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-

IO Portably and with High Performance,” in Proceedings of the
Sixth Workshop on I/O in Parallel and Distributed Systems,
1999, pp. 23–32.

[2] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the role of burst buffers in
leadership-class storage systems,” in In Proceedings of the 2012
IEEE Conference on Massive Data Storage, 2012.

[3] M. Romanus, M. Parashar, and R. B. Ross, “Challenges and
considerations for utilizing burst buffers in high-performance
computing,” arXiv preprint arXiv:1509.05492, 2015.

[4] about xpress disk (xpd), Kove Corporation, 2015.
[5] “Worlds’s most advanced application aware I/O

acceleration solutions,” http://www.ddn.com/products/
infinite-memory-engine-ime14k, DDN, accessed: 2016-07-12.

[6] “Flash Storage,” http://www-03.ibm.com/systems/storage/
flash, IBM, accessed: 2016-07-12.

[7] K. Sato, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski,
N. Maruyama, and S. Matsuoka, “A user-level infiniband-based
file system and checkpoint strategy for burst buffers,” in Cluster,
Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on. IEEE, 2014, pp. 21–30.

[8] T. Wickberg and C. Carothers, “The RAMDISK storage ac-
celerator: a method of accelerating I/O performance on HPC
systems using RAMDISKs,” in Proceedings of the 2nd Inter-
national Workshop on Runtime and Operating Systems for
Supercomputers. ACM, 2012, p. 5.

[9] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and
W. Yu, “BurstMem: A high-performance burst buffer system
for scientific applications,” in Big Data (Big Data), 2014 IEEE
International Conference on. IEEE, 2014, pp. 71–79.

[10] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-
ur Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur et al.,
“Memcached design on high performance RDMA capable inter-
connects,” in 2011 International Conference on Parallel Pro-
cessing. IEEE, 2011, pp. 743–752.

[11] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica, “Resilient
distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing,” in Proceedings of the 9th USENIX con-
ference on Networked Systems Design and Implementation.
USENIX Association, 2012, pp. 2–2.

[12] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-
memory big data management and processing: A survey,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27,
no. 7, pp. 1920–1948, 2015.

[13] W. Loewe, T. McLarty, and C. Morrone, “IOR Benchmark,”
2012.

