
Popper: Practical Reprodudicble Evaluation of Systems Research

Ivo Jimenezu, Michael Sevillau, Noah Watkinsu, Carlos Maltzahnu, Jay Lofsteads, Kathryn Mohrorl,
Remzi Arpaci-Dusseauw and Andrea Arpaci-Dusseauw

uUC Santa Cruz sSandia National Labs lLawrence Livermore National Labs wUW Madison

Independently validating experimental results in the field
of computer systems research is a challenging task. Recreat-
ing an environment that resembles the one where an experi-
ment was originally executed is a time-consuming endeavour.
In this WIP, we present Popper [1], a convention (or pro-
tocol) for conducting experiments following a DevOps [2]
approach that allows researchers to automate the re-execution
and validation of an experiment.

Over the last decade software engineering and systems
administration communities (also referred to as DevOps)
have developed sophisticated techniques and strategies to
ensure “software reproducibility”, i.e. the reproducibility
of software artifacts and their behavior using versioning,
dependency management, containerization, orchestration,
monitoring, testing and documentation. The key idea behind
the Popper Convention is to manage every experiment in
computation and data exploration as a software project, using
tools and services that are readily available now and enjoy
wide popularity. By doing so, scientific explorations become
reproducible with the same convenience, efficiency, and
scalability as software reproducibility while fully leveraging
continuing improvements to these tools and services. Rather
than mandating a particular set of tools, the convention only
expects components of an experiment to be scripted (see
Fig. 1). There are two main goals for Popper:

1. It should be usable in as many research projects as possi-
ble, regardless of their domain.

2. It should abstract underlying technologies without requir-
ing a strict set of tools, making it possible to apply it on
multiple toolchains.

We say that an experiment is Popper-compliant (or that
it has been “Popperized”) if all of the following are avail-
able, either directly or by reference, in one single source code
repository: experiment code, experiment orchestration code,
reference to data dependencies, parametrization of experi-
ment, validation criteria and results. In other words, a Popper
repository contains all the dependencies for one or more ex-
periments, optionally including a manuscript (article or tech
report) that documents them.

We maintain a list of “Popperized” experiments at
http://github.com/systemslab/popper. We also

Figure 1: A generic experimentation workflow viewed
through a DevOps looking glass. The logos correspond to
commonly used tools from the DevOps toolkit. Scripts corre-
sponding to each stage are stored in a version control reposi-
tory, whose commit log resembles a lab notebook .

provide a CLI tool for researchers to bootstrap a project that
follows the convention, as well as a wiki with guides and ex-
amples. Projects that follow the convention can make use of
our http://falsifiable.us service to automatically
validate an experiment.

Listing 1 Interacting with the Popper-CLI tool.

$ cd mypaper-repo
$ popper init
-- Initialized Popper repo

$ popper experiment list
-- available templates ---------------
ceph-rados proteustm mpip
cloverleaf gassyfs zlog
spark-bench torpor malacology

$ popper add torpor myexp
-- Added torpor experiment to mypaper-repo

$ popper check myexp
-- SUCCESS - myexp is Popper-compliant

Bibliography
[1] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lof-

stead, K. Mohror, R. Arpaci-Dusseau, and A. Arpaci-
Dusseau, Popper: Making Reproducible Systems Perfor-
mance Evaluation Practical, UC Santa Cruz, SOE-16-10,
2016.

[2] M. Httermann, DevOps for Developers, 2012.


	Bibliography

