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Abstract—Container based applications are rapidly growing
in popularity for virtualization due to the ease of deployment
coupled with high-performance. Emerging byte-addressable, non-
volatile memories, commonly called Storage Class Memory or
SCM, technologies are promising both byte-addressability and
persistence near DRAM speeds operating on the main memory
bus. These new memory alternatives present a challenge for
container based applications which typically access persistent
data through layers of file isolation. This paper presents a
high-performance containerized version of byte-addressable, non-
volatile memory (SCM) for applications running inside a con-
tainer.

We created a container aware Linux loadable Kernel Module
(LKM) that presents byte-addressable, persistent memory for
containerized applications. We performed evaluation using micro-
benchmarks, STREAMS, and Redis, and found our LKM with
container support has near the same memory throughput for
persistent in-memory applications as a non-containerized appli-
cation and much higher throughput than persistent in-memory
applications accessing SCM through Docker Storage or Volumes.

I. INTRODUCTION

Containers offer lightweight virtualization for applications
and services running on the same host operating system.
Containers are an alternative to full virtualization of a host
operating system and services, only isolating running appli-
cations using a “chroot” for persistent file accesses, Linux
C groups for CPU and memory usage, and I/O isolation.
Docker [13] is a relatively new open-source implementation of
container-based virtualization technology that has been gaining
in popularity for quick and easy cloud deployments and for
recent work in live migration of containers using Flocker
[14]. Docker creates lightweight Linux based containers with
containerized applications having near the same performance
as when the application is executed outside the container [6].

An exciting new memory technology with the potential of
replacing hard drives and SSDs has the potential of chang-
ing traditional storage approaches. This new memory, called
Storage Class Memory or SCM, is both byte-addressable and
persistent and operates on the main memory bus, offering a
solution between slow block based persistent storage and fast,
byte-addressable volatile memory.

Figure 1 shows both traditional container based storage
and Storage Class Memory. Access to SCM will be provided
via a traditional mmap call to an underlying device driver or
file [18]. This poses a problem for applications running inside
an isolated container because an mmap of a file through an
isolation layer may not gain performance benefits of SCM.
Additionally, exposing a shared device to multiple containers

can remove persistence isolation from containers and introduce
security and portability issues.

We present a solution to this problem by introducing a
Containerized SCM driver. It detects when applications are
accessing the driver from within a container and presents an
identical copy of the SCM.

II. BACKGROUND

Virtualization is defined as having three key properties
including isolation, encapsulation, and interposition [16], were
isolation refers to guests not being able to affect others.
Jails [9] was introduced for lightweight virtualization of
environments to allow for sharing of a machine between
several customers or users while still allowing for isolation of
files and services of the guests on the same machine through
the use of chroot and I/O constraints. Chroot changes the root
of the file system to a different location for application level
persistence isolation and security. This has many benefits since
a system can be shared securely, but services such as CPU and
memory were not isolated and could be abused by users.

Linux Containers or LXC [11] were introduced as the Linux
version of Jails. The implementation added features to restrict
memory and CPU usage that extended its isolation features.
Docker [13] is an open-source project also for Linux which
automates the deployment of applications or bundled services
inside of Linux Containers. Volatile memory is handled from
inside a container using regular virtual memory accesses with
limits imposed by the operating system if Linux CGroups are
used.

Handling access to persistent data inside a Docker Container
is not a choice to be taken lightly, as there are several choices
available: using a container file or traditional Docker Storage,
an external or Docker Volume, or direct access to a device.
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Fig. 1: Container based storage and Storage Class Memory



Each has it’s own advantages and disadvantages and needs to
be specified on container start if requiring a special device or
volume:

1. Docker Storage: Storage to traditional files inside a
container are accessed using a pluggable storage driver ar-
chitecture. File accesses are layered using AUFS (or Another
Union File System), Device Mapper, OverlayFS, VFS, or ZFS.
A layered access requires copying of data through multiple file
or persistence layers. AUFS uses Copy-on-Write and copies
the entire file on first update, which could waste space but
be faster if all of the contents of a file are updated. Device
Mapper is a new option that performs copies at the block layer
reducing space, but is slower on the writes to first blocks.
Another drawback is the entire Docker service daemon must
be configured for the driver and cannot be changed unless
reconfigured and re-installed.

2. Docker Volumes: Docker Volumes are used to share
data between containers or the container and the host. Usage
is passed as options on startup of a container, and cannot
be added later. Data is also not isolated, so changes in one
environment affect other. If a container is paused and restarted
elsewhere, volume data must be copied and managed by the
Docker daemon.

3. Direct Device Access: Direct access to a device is given
on start of a container and the same driver must be present on
restart. Special privilege must also be granted to the container
if it is going to write to the device; this also goes against
isolation principles.
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Fig. 2: Storage Class Memory exposed to Docker Container
through a SCM Filesystem or Driver

Storage Class Memory presents a new situation for con-
tainers as it offers memory that is persistent. Options for SCM
device access is shown in Figure 2. A privileged device access
in situation 3 also is not isolated, so access to SCM from all
containers to the device will not be isolated.

Combining Docker Containers with SCM poses an inter-
esting challenge. If we expose SCM as a Docker Storage
or Volume, then we might lose the performance of byte
addressability. Further, exposing it as a dedicated, privileged
device driver will lose application isolation and portability.

Persistence consistency guarantees impose additional prob-
lems. Consider a simple application that is writing to a variable
Z. The value might be caught in a number of places from the
processor cache to a number of write buffers. If an atomic
operation is needed for an in-memory data structure, the new
value of Z should be visible and accessible to others on the
completion of a desired block or application complete. If a
power failure occurs, for DRAM based variables, being located
anywhere in the hardware is not problematic as the variable
value is cleared on restart. However, if the value is located in
SCM and a power failure occurs, the result of the computation
may not be committed to persistent SCM. Even if a value is
written to a memory location using a cache-line flush, clflush,
a value may not be persisted to SCM.

The new Intel architecture specification [8] specifies new
instructions such as clwb, or cache-line write-back, which
writes a cache line out to the write buffers without invalidation
and pcommit, or persistent memory commit, which doesn’t
retire until all globally visible stores are persisted to SCM.
Both are weakly ordered and must be between store fences,
or sfence.

This complicates fast reliable storage for Docker Containers,
as multiple levels of synchronization, which are expensive, are
required to maintain consistency through the layers. For in-
stance, an application might be performing its own consistency
guarantees through an Undo Log, which is a synchronous
operation making a copy of a value before writing a new
value. Before each write however, each value must be made
persistent on the underlying medium. In the case of disk based
persistence, this is accomplished through a disk flush. In SCM
this can be accomplished through creating a log, writing the
address of Z and value of Z to the log, sfence, pcommit, sfence,
then writing the new value of Z. Once new values are written,
the values may be flushed immediately or delayed. If the
writes to the SCM locations are being performed through a
Docker Storage Layer or Volume, then all of the writes to
the variables, and the synchronization points are also passed
through, which can be a very expensive operation. Therefore,
it is advantageous to access SCM directly through the device
driver. We present and evaluate a high-performance device
driver that provides access to SCM while still allowing for
isolation for Docker Containers.

III. CONTAINERIZING SCM

This section presents the Containerized Storage Class Mem-
ory design as a Linux loadable Kernel Module or LKM. The
overall system design is shown in Figure 3.

The system implementation is comprised of three main
components:

¢ Docker Command Line Client Integrations

o User Level Library

o Container Aware Linux loadable Kernel Module

Due to the lack of readily available SCM DIMMS for
Docker testing, we used Ramfs to simulate SCM data. Then
for a file system that does persistence consistency, we used
an ext2 file system in the SCM data space. The file system
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Fig. 3: Containerized Storage Class Memory System Design

contents for Docker and supporting libraries are installed into
the SCM FS space. The file system layout is as follows:

Listing 1: Example SCM Data File Structure

SCM Driver (RAMFS) — /scmdata
|->hostdata
|->hostscmfs
ext file sys mount /scmfs
with Docker /var/lib/docker/
/dfscmdata volumes
|
|->containers/
|->images/

User Library

The user library provides several functions, namely scmalloc
and scmsync. The scmalloc call examines the environment
and can be configured to provide access to any one of the
three configurations described previously: Docker Volumes,
Storage, our CSCM driver, or volatile DRAM. For volume
or storage access, a named file can be specified and is
then opened on first access and mmaped into user address
space. The resulting pointer from the mmap call is returned
and saved statically in the function and incremented by the
requested size. Subsequent calls use the incremented pointer
and increment the next available location as well.

The scmsync function call simply calls sync on the file
handle. If the file handle is for /dev/scm, then it calls sfence,
pcommit, sfence. The pcommit is emulated by CPUID.

CSCM Kernel Module

The Containerized SCM Linux loadable Kernel Module
creates an SCM data area for the container, sets up the node
and major version number. It registers our container supported
/dev/scm device appropriately and registers the mmap handler.
On container restart it is attached through the active device to
the persistent SCM data.

On an mmap the following pseudo-code is executed:

Listing 2: CSCM LKM mmap flow

The Docker container is executed using a privileged device
driver to our CSCM LKM driver, which gives privileged access
to the container to read and write to the device driver /dev/scm.

docker run —privileged -ti —device=/dev/scm —name=testl
rhel:7

Docker Client Integration

Docker 1.10.3 and API for Client Version 1.22 is built in a
language called the Go Programming Language. The Docker
API client allows for simple extensions to the Docker interface.
It communicates to the Docker server daemon and responses
from the daemon can be handled through the Go language.
On container start, the command line to launch an image is:

docker run image id

We modified the docker api client run code to initialize the
data in a container on startup. The image id is obtained from
the return value from the Docker daemon after the container
create image and before a container run. The data in the
/scmdata image for the id is copied if an image exists for
the new container being launched. If no image id is present,
it need not be copied since the CSCM driver can create it on
the first access. Likewise for a commit, the reverse procedure
is followed.

static int scm_mmap(filp , vma){

//  Get the file system root

//  Detect chroot (is fs root /)
//  Get SCM location
// If root, /scmdata/hostdata

//  else examine /proc/l/cgroup
//  Lock process
//  Open SCM File
// Unlock process
//  Setup VMA generic_file_mmap

One challenge after getting the generic VMA set was
determining not just if an application is in a container but the
container id itself. The container id dictates what underlying
file to open. The file /proc/l/cgroup has different values
depending on the OS.

Once the correct SCM data file is opened, the file can be
mapped since it’s using Ramfs underneath and the resulting
generic file mmap call value can be returned to the scmalloc
call. If the SCM data file isn’t present, it is be created on the
first access.

One area of consideration is security for the privileged
CSCM LKM. For security, our CSCM LKM on application
initialization, locks the file system for the current process so




it can’t open a file when the LKM has chrooted itself to open
the appropriate SCM file in the parent system.

IV. EVALUATION

The SCM Containers core library and Linux loadable Kernel
Module were built using gcc 4.8.2. Testing was performed
on a machine equipped with an Intel(R) Xeon(R) CPU E5-
2697 v2 processor running at 2.70GHz. The processor has
12 cores, each of which supports 2 threads, for a total of 24
hardware threads. The processor is equipped with 32GB of
memory organized with four DDR3 8GB DIMMS, clocked at
1.867GHz. The host operating system and guest containers are
identical versions of Red Hat Enterprise Linux Server release
7.2 (Maipo) running Linux kernel 3.10. In evaluation, SCM
is exposed as 200MB chunks on the /scmdata file system. A
Docker container is executed with:

docker run —privileged -ti —device=/dev/scm —name=testl
-v /semfs:/vol -v /scmdata:/hostscm testa

We tested two micro-benchmarks followed by tests using
STREAM [12] and Redis [17] using each configuration of
Host, Docker Device (CSCM), Docker Storage and Docker
Volumes.

The array update micro-benchmark creates an array in SCM
using the CSCM user library scmalloc for 20 million 4-byte
integers and randomly updates elements in the array. We
record the average throughput of updates per second for each
configuration. Figure 4 shows how the Docker CSCM device
has near the same memory throughput as when the test is
running on the host and higher throughput over storage and
volumes, due to data having to go through multiple storage
layers or the volume driver.
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Fig. 4: Single Updates Per Second on Array of 4-Byte Integers

We then modified the Memory STREAM Benchmark [12]
to allocate memory using CSCM scmalloc and linked with
the CSCM user library. We tested the Copy function which
sequentially copies data from one 90MB chunk to another
location. Figure 5 shows how the Docker CSCM device has
near the same memory throughput as when the test is running
on the host. The sequential nature of the benchmark allows
for the caching in the Docker Storage driver to have high
performance; however, there are no consistency guarantees in
this memory benchmark.
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Fig. 5: Memory Copy Throughput in MB/s for STREAM

We tested a micro-benchmark that adds elements to an in-
memory B-Tree, initialized with 200k elements. Figure 6
shows the average time required to insert additional elements.
Docker Storage had the lowest value recorded. The equal
performance is due to many of the top level elements in the
tree are in the processor cache, resulting in a constant cost.
Consistency guarantees in the following experiments show the
higher performance of the CSCM Device Driver.
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Next we tested several benchmarks in Redis [17], an
in-memory data structure store, that offers lists and hash
table values. We configured Redis to operate in memory and
integrated it with the CSCM user library by modifying the
memory allocator Jemalloc that ships with Redis to use our
CSCM scmalloc routines. We executed the Redis benchmarks



for set, get, and list push times and recorded the average
requests serviced per second. Figure 7 shows the CSCM driver
in a Docker container has equal requests per second throughput
as the same benchmark running on the host through the driver.
These have twice the throughput as the Docker Storage or
Volume options as requests do not have to flow through the
Docker Storage or Volume drivers.
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Finally, we tested persistence consistency by adding syn-
chronization using scmsync in the CSCM library to the array
and B-Tree tests. Figure 8 shows the array throughput and
Figure 9 shows the B-Tree throughput. In both cases the
CSCM driver running in the Docker Container has the same
throughput as when running on the host. When the SCM
is accessed through volumes however, performance degrades
by a factor of 10. This is due to the additional level of
synchronization required to the volume. Even slower is the
Docker Storage driver which is another factor of 10 slower
than the volume driver, making it two orders of magnitude
slower than the host or device. This is due to the storage
driver going through an additional layer. Future work includes
exploring changes in the transaction size.

V. RELATED AND FORWARD WORK

Docker [13] has a number of supported file systems and
volumes from AUFS, a layered union file system that uses
Copy-on-Write when files are modified, to the Device Mapper
which uses thin provisioning to implement the layers. Recent
work on Flocker [14] manages Docker containers themselves

and integrates with a Docker Swam manager allowing for
Docker Data Volumes to follow migrated Docker Containers.
However, this support is for block based devices and not
byte-addressable, non-volatile memory which faces persistent
memory consistency problems.

Consistency models for persistent memory was considered
in [15]. For SCM atomic consistency, numerous software
logging approaches and new hardware-software methods have
been proposed [1], [2], [4], [7], [20], [21], [23]. These all rely
atomic 8-64 byte writes to SCM and new instructions such
as pcommit. NVM programming models will include use of
mmap to access SCM through loads and stores [18]. However,
these models do not address virtual machine containers for
accessing SCM in isolation.

Several general purpose persistent memory file systems built
on SCM have been proposed that can allow quick adoption of
application use of SCM. Since these are general purpose file
systems, they could support full virtual machines running on
top of them such as KVM [10]. BPFS, or Block-Persistent
File System, [3] uses copy-on-write techniques for a ordering
of cache evictions but requires changes to the hardware.

The Persistent Memory File System [5], or PMFS, is
a complete file-system implementation built for SCM but
requires a dedicated kernel and doesn’t address containers.
SCMES uses sequences of mfence and clflush operations to
perform ordering and flushing of load and store instructions
and requires garbage collection [22]. These file systems have
to be accessed using regular Docker Storage or through Docker
Volume management from Docker suffering from isolation and
performance.

Research into Non-Volatile Memory allocators such as
nvmalloc could be accessed from containers but do not support
any sort of container isolation other than regular virtual
memory isolation. Recent work to virtualize Non-Volatile Ram
[19] was presented to support Xen hypervisor, but doesn’t
address the consistency guarantees that might be needed by
host applications or support containers.

VI. SUMMARY

Running applications inside containers using Docker is
growing in popularity as it presents a low-cost, high perfor-
mance method for isolating applications and services. Emerg-
ing byte-addressable non-volatile memory, commonly called
Storage Class Memory, presents an interesting challenging for
in-memory persistent applications running inside a container.

This paper investigated tradeoffs for presenting the SCM
persistence to a container based application through a memory-
mapped file inside a container, mounted as a volume, and as a
container-aware Linux loadable Kernel Module. We presented
and evaluated CSCM, for a containerized LKM with an mmap
interface for in-memory applications and integration with
Docker.

We found the container aware LKM to have the highest
in-memory application throughput with orders of magnitude
higher throughput for persistence to volumes while still achiev-
ing container persistence isolation for SCM.
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