Towards A Scalable, Resilient, and Efficient Data
Service for Exascale Computing

Michael Brim!, Tonglin Li', Sarp Oral?, Feiyi Wang?, Geoffroy Vallee?, Scott Atchley?
!Computer Science and Mathematics Division, 2National Center for Computational Sciences
Oak Ridge National Laboratory, Oak Ridge, USA

I. INTRODUCTION

Exascale high performance computing (HPC) systems are
expected to include multi-tier storage systems. Burst buffers,
consisting of fast non-volatile memory technology, will be a
critical tier for resilient, high performance storage. A majority
of the discussion surrounding burst buffers relates to staging
of scientific simulation checkpoints, primarily the buffering
of written data to allow applications to continue computation
while the checkpoint is drained to a parallel file system. Such
a narrow focus ignores read-intensive workloads (e.g., Big
Data analytics and runtime visualization) that are expected to
constitute an increasingly larger fraction of HPC jobs. The
Exascale Computing Data Service (ExCDS) project is investi-
gating a distributed data service that efficiently manages data
transfers across application memory, burst buffers, and parallel
file systems for a diverse collection of simultaneous workloads.
In providing a center-wide data service, our goals are: (1) to
relieve applications of the burden of explicit data management
across storage tiers, and (2) to manage aggregate I/O behavior
to improve utilization of storage resources. Our hypothesis
is that by monitoring the storage hierarchy across all tiers,
the data service can identify resource contention and I/O
load imbalance and use that information to improve system-
wide storage behavior through a collection of intelligent I/O
management techniques. In comparison to existing techniques
that optimize per-workload storage using I/O middleware,
our solution has the potential to provide significant boosts
to performance and productivity for all workloads sharing a
multi-tier storage system.

II. SOLUTION ARCHITECTURE AND PROGRESS
There are four crucial components in our exascale data
service architecture.

Application interfaces: We have investigated appropriate
application-level interfaces and semantics for a scalable and
resilient data service that supports both traditional scientific
and Big Data workloads. The ExCDS application API uses
three core data abstractions: (1) a data object, (2) a data object
collection, and (3) a data namespace. These abstractions form
an organizational hierarchy wherein a namespace is a container
for data object collections and collections hold data objects.
A data object is a contiguous region of bytes associated with
a unique identifier within the enclosing collection. Operations
on data objects are asynchronous. Collections are versioned
to support time-evolving data and consistent data views from
distributed application processes. Once committed, the data
within a specific version of the collection is immutable. Collec-
tion attributes may be specified that influence data management
decisions by the data service. Example attributes include hints
such as expected I/O patterns, requirements for placement,
persistence, or resilience, and desired quality of service (QoS).

For compatibility with existing applications, we have also
developed a POSIX I/O interposition layer that builds upon
the ExCDS APIL In future work, we plan to investigate the
potential benefits of direct integration of our API within HDF5
and ADIOS.

System-wide Storage Monitoring: In prior work we have
developed MELT [1], an advanced monitoring infrastructure
for center-wide Lustre deployments. MELT uses a scalable
overlay network called SNOflake for communication and
distributed data processing. MELT collects host-based and
Lustre metrics on clients, servers, and I/O routers, and then
aggregates the metric data to provide system-level and job-
level information. For this work, we have extended MELT to
monitor burst buffer servers.

Versatile Data and Metadata Storage: ExCDS is de-
signed to use a modular data management interface to backend
storage technologies. The interface provides methods for stor-
ing and retrieving data and metadata associated with the core
ExCDS data abstractions. Currently, we have implemented a
POSIX file system data storage module and are developing
modules for memory-based and burst buffer storage. ExCDS
uses a key-value store (KVS) abstraction to manage metadata
and runtime information (e.g., monitoring state). The current
KVS implementation uses ZHT [2].

Intelligent I/O Management: The SmartlO component
of ExCDS is tasked with using the information gained via
system-wide monitoring to guide decisions on data placement,
movement, and aggregation in the handling of distributed
application API requests. This component also uses a modular
design, so that alternative I/O management strategies can
be implemented and compared. The current implementation
use the DumbIO module that provides no advanced decision
making and serves as a baseline. We are actively research-
ing intelligent techniques based on analytical and machine-
learning based I/O models to extend and improve upon our
earlier work that studied balanced data placement and dynamic
I/O resource path selection [3]. In future work, we plan to also
study placement and movement decisions based on temporal
access patterns, replication in support of data sharing, and
system-level QoS mechanisms.

REFERENCES

[1] Michael J. Brim and Joshua K. Lothian, Monitoring Extreme-scale Lustre
Toolkit, International Workshop on The Lustre Ecosystem: Challenges
and Opportunities, March 2015.

[2] Tonglin Li, Xiaobing Zhou, Ke Wang, Dongfang Zhao, Iman Sadooghi,
Zhao Zhang, Ioan Raicu, A Convergence of Key-Value Storage Systems
from Clouds to Supercomputers, Journal of CCPE, 2015

[3] Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari, and Sudhar-

shan Vazhkudai, Improving Large-scale Storage System Performance via
Topology-aware and Balanced Data Placement, IEEE ICPADS 2014.



