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Abstract—Exascale I/O initiatives will require new and fully
integrated I/O models which are capable of providing straightfor-
ward functionality, fault tolerance and efficiency. One solution
is the development of a transactional object storage I/O stack
and an extended version of HDF5 capable of managing this
next generation I/O stack. This new HDF5 implementation adds
support for end-to-end data integrity and security, mapping
objects, index building, maintenance and query, and analysis
shipping. This research highlights challenges and issues when
porting common scientific application codes to use a transactional
I/O stack.

I. INTRODUCTION

Scientists, engineers and application developers will soon
need to address the I/O challenges of computing on future
exaflop machines. Economic realities drive the architecture,
performance, and reliability of the hardware that will comprise
an exascale I/O system [Kogge et al., 2008]. Moreover, other
I/O researchers [Isaila et al., 2016] have highlighted signifi-
cant weaknesses in current I/O stacks that will need to be
addressed in order to enable the development of systems that
measurably demonstrate all of the properties required of an
exascale I/O system. Possible poor filesystem performance at
exascale has also lead to the introduction of new or augmented
file systems [Mehta et al., 2012]. Furthermore, it is anticipated
that failure will be the norm [Kogge et al., 2008] and the I/O
system as a whole will have to handle it as transparently
as possible, while providing efficient, sustained, scalable and
predictable I/O performance. The enormous quantities of data,
and especially of application metadata, envisaged at exascale
will become intractable if there can be no assurance of
consistency in the face of all possible recoverable failures and
if there can be no assurance of error detection in the face of
all possible failures.

Furthermore, HPC applications developers and scientists
need to be able to think about their simulation models at higher
levels of abstraction if they are to be free to work effectively on
the size and complexity of problems that become possible at
exascale. This, in turn, puts pressure on I/O APIs to become
more expressive by describing high-level data objects, their
properties and relationships. Additionally, HPC developers and
scientists must be able to interact with, explore and debug their
simulation models. The I/O APIs should, therefore, support
index building, maintenance, and traversal and be integrated

with a high level interpreted language such as python to permit
ad-hoc programmed queries. Currently, high-level HPC I/O
libraries support relatively static data models and provide little
or no support for efficient ad-hoc querying and analysis. I/O
APIs are required that support dynamic data models with
pointers to express arbitrary relationships between them and
to annotate them with expected usage to guide lower layers in
the I/O stack.

This paper discusses an effort to port applications using
HDF5 to use newly proposed exascale transactional I/O stacks.
Section II gives an overview of the envisioned exascale I/O
systems and the challenges associated with them. Section III
discusses a new transactional storage I/O stack implementation
via HDF5, and Section IV discusses the strategies involved
in porting scientific applications to the proposed storage I/O
stack.

II. EXASCALE I/O CHALLENGES

The likely trend for application I/O at exascale is to
become object oriented. Meaning, rather than reading and
writing files, applications will instantiate and persist rich
distributed data structures using a transactional mechanism
[Lofstead et al., 2013]. As concurrency increases by orders of
magnitude, programming styles will be forced to become more
asynchronous [Keyes, 2011] and I/O APIs will have to take
a lesson from HPC communications libraries, by using non-
blocking operations to initiate I/O coupled with event queues
to signal completion. I/O subsystems that impose unnecessary
serialization on applications, e.g. by providing over-ambitious
guarantees on the resolution of conflicting operations, simply
will not scale. It will, therefore, become the responsibility of
the I/O system to provide, rather than impose, appropriate
and scalable mechanisms to resolve such conflicts and the
responsibility of the application to use them correctly.

Components and subsystems in the numbers that will be
deployed at exascale mean that failures are unavoidable and
relatively frequent. Recovery must be designed into the I/O
stack from the ground up and applications must be provided
with APIs that enable them to recover cleanly and quickly
when failures cannot be handled transparently. This mandates a
transactional I/O model so that applications can be guaranteed
their persistent data models remain consistent in the face
of all possible failures. This will also guarantee consistency
for redundant object data and filesystem metadata whether
such mechanisms are implemented within the filesystem or in
middleware. Furthermore, the exascale filesystem namespace
should continue to operate at human scale and that the object
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Figure 1. Exascale I/O architecture – NVRAM on I/O Nodes enable burst
buffer capability to handle peak I/O load and defensive I/O.

namespace required to implement scalable I/O should be
separate from it. This can be achieved by confining the object
namespace within containers that appear in the filesystem
namespace as single files. Higher levels of the I/O stack will
see these containers as private scalable object stores, driving
the need for a new standard low-level I/O API to replace
POSIX for these containers. This will provide a common
foundation for alternative middleware stacks and high-level
I/O models, suitable to different application domains. Addi-
tionally, these new APIs, as POSIX does today, need to support
alternative filesystem implementations.

A. Exascale system I/O architecture

The economics and performance tradeoffs between disk and
solid state persistent storage or NVRAM determine much
of the exascale system architecture. NVRAM is required to
address performance issues but cannot scale economically to
the volumes of data anticipated. Conversely, disks can address
the volume of data, but not economically the performance
requirements. This dictates a system architecture, Figure 1,
that places NVRAM close to the compute cluster in order
to exploit its cross-sectional bandwidth for short-term use
as a cache or burst buffer (BB) [Nowoczynski et al., 2008],
[Bent et al., 2012a], [Bent et al., 2012b]. Disk-based storage
bandwidth will be an order of magnitude less. This places
fewer demands on the networking needed to connect the stor-
age to the compute, allowing it to use commodity networking
hardware so that it can become a site-wide shared storage
resource.

B. Exascale compute cluster

The exascale compute cluster is envisioned to have on the
order of 100,000 Compute Nodes (CNs). The CNs will run
a lightweight runtime/microkernel, supporting HPC commu-
nications libraries, and I/O forwarding to staging processes
running on dedicated I/O Nodes (IONs). Applications will
use a high-level I/O library with an object-oriented API that
encrypts or checksums data on its way to storage and decrypts
or checks it on retrieval to guarantee end-to-end data integrity
and optionally, security.

Typically, IONs will run Linux and have direct access to
the global shared filesystem. Each ION will serve a different
set of compute nodes to ensure I/O communications between
CNs and IONs exit the exascale network as fast as possible.

Figure 2. EFF stack configuration.

The NVRAM on the IONs will provide a key-value store for
use as a pre-staging cache and BB to handle peak I/O load and
defensive I/O. Write data captured by the BB, will be repack-
aged by a layout optimizer according to expected usage into
objects sized to match the bandwidth and latency properties of
the storage tier targeted on the shared global filesystem. These
storage objects will then be written in redundant groups using
erasure codes or mirroring as appropriate. Object placement
will be dynamic and responsive to server load to ensure servers
remain evenly balanced and throughput is maximized.

CN or ION failure will be handled transparently by restart-
ing the application from the last accessible checkpoint. In the
case of CN failure, or if the NVRAM subsystem used for
the Burst Buffer is highly available and reliable (i.e. fully
redundant and accessible via multiple paths) this will only
require rollback to the last checkpoint stored in the Burst
Buffer. Otherwise the application will have to restart from the
last checkpoint saved to the global shared filesystem.

III. A NEW I/O SOFTWARE STACK

A new object storage I/O API based on HDF5 was de-
veloped which adds support for end-to-end data integrity and
security, mapping objects, index building, maintenance and
query, and analysis shipping. The new I/O API is implemented
as a library that can be layered over lower level object storage
APIs. Function shipping can be used on the exascale machine
to export the API from the IONs to the CNs. The top of the
stack features a new version of HDF5, extended to support the
new exascale fast forward (EFF) storage semantics for high-
level data models, their properties and relationships. In the
middle of the stack is IOD, the I/O Dispatcher, which stages
data between storage tiers and optimizes placement. Finally
at the bottom of the stack is DAOS, Distributed Application
Object Storage, which provides scalable, transactional object
storage containers for encapsulating entire exascale datasets
and their metadata, Figure 2.

A. I/O Transaction model

The new I/O stack uses the concept of transactions, where
one or more processes in the application can participate
in a transaction, and there may be multiple transactions in
progress in a container at any given time. Transactions are
numbered, and the application is responsible for assigning
transaction numbers in the EFF storage stack. Updates in the
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form of additions, deletions and modifications are added to
a transaction and not made directly to a container. Once a
transaction is committed, the updates in the transaction are
applied atomically to the container.

The basic sequence of transaction operations an application
typically performs on a container that is open for writing is:

1) start transaction N,
2) add updates for container to transaction N,
3) finish transaction N.

Transactions can be finished in any order, but they are com-
mitted in strict numerical sequence. The application controls
when a transaction is committed through its assignment of
transaction numbers in “create transaction / start transaction”
calls and the order in which transactions are finished, aborted,
or explicitly skipped.

The version of the container after transaction N has been
committed is N. An application reading this version of the
container will see the results from all committed transactions
up through and including N.

The application can persist a container version, N, causing
the data (and metadata) for the container contents that are on
the BB to be copied to DAOS and atomically committed to
persistent storage.

The application can request a snapshot of a container
version that has been persisted to DAOS. This makes a
permanent entry in the namespace (using a name supplied by
the application) that can be used to access that version of
the container. The snapshot is independent of further changes
to the original container and behaves like any other container
from this point forward. It can be opened for write and updated
via the transaction mechanism (without affecting the contents
of the original container), it can be read, and it can be deleted.

B. HDF5 EFF implementation

HDF5’s programming API provides a set of user-level
object abstractions for organizing, saving, and accessing appli-
cation data in a storage container, such as groups for creating a
hierarchy of objects and datasets for storing multi-dimensional
data. The HDF5 binary file format is no longer used in the
EFF stack, instead, each HDF5 data model object is now
represented as a set of IOD objects and IOD Key-value objects
are used to store HDF5 metadata, replacing binary trees that
index byte streams. A modularized version of the HDF5 library
that supports a Virtual Object Layer (VOL) was used with
the EFF stack. For this work, a specialized client/server VOL
plug-in that interfaces to the IOD API is used, replacing the
traditional HDF5 storage-to-byte-stream binary format with
storage-to-IOD objects.

Caching and prefetching is handled by the IOD layer,
rather than by the HDF5 library, with the HDF5/IOD VOL
server translating an application’s directives for HDF5 objects
into directives for IOD objects. Whereas HDF5 traditionally
provided knobs for controlling cache size and policy, and then
tried to “do the right thing” with respect to maintaining cached
data, the EFF stack relies on explicit user directives, with the
expectation that written data may be analyzed by another job
before being evicted from the burst buffer. In addition to the

changes ‘beneath’ the existing HDF5 API, the EFF HDF5
version supports features seen as critical to future exascale
storage needs: asynchronous operations, end-to-end integrity
checking, data movement operations that enable support for
I/O burst buffers, and support for transaction capabilities that
improve fault tolerance of data storage and allow near real-
time analysis for producer/consumer workloads. Finally, the
EFF HDF5 version has exascale capabilities that are targeted
to both current and future users: query/view/index APIs to
enable and accelerate data analysis, a map object that aug-
ments the group and dataset objects, and an analysis shipping
capability that sends application-provided Python scripts to
execute directly where data is stored.

IV. APPLICATION I/O STRATEGIES

This section discusses the strategies involved in porting
scientific applications to the EFF stack. The first application
ported to the EFF stack is HACC and gives an overview
of the usability and capabilities from the perspective of a
typical application code. The other two applications (netCDF-
4 and PIO) are higher-level I/O libraries built on HDF5 and
demonstrate the use of a higher level of abstraction in order to
simplify an application’s interaction with the I/O stack, which
in turn should ease the transition to the EFF stack.

A. HACC application

HACC (Hardware/Hybrid Accelerated Cosmology Code)
[HACC, 2016] is an N-body cosmology code framework
where a typical simulation of the universe demands extreme-
scale simulation capabilities. However, a full simulation of
HACC requires terabytes of storage and hundreds of thousands
of processes, which far exceeds the computational resources
available for this research. Consequently, a smaller I/O code,
GenericIO, was used to mirror the I/O calls in HACC without
the need to run an entire simulation. In its current implementa-
tion, all the “heavyweight” data is handled using POSIX I/O,
and the “lightweight” data is handled using collective MPI-IO.

Critical features for HACC’s I/O include,
• Resiliency for data verification,

– Checksumming from the application’s memory to the
file and vice-versa,

– Mechanism for retrying I/O operations,
• Sub-filing,

– Should avoid penalties in the file system associated
with locking and contention,

• Self-describing file.
As for I/O strategies, the HACC team [Habib et al., 2014]
found that creating one output file per process resulted in the
best write bandwidth compared to other methods because it
eliminates locking and synchronization between processors.
However, this method is not used due to several issues:

• File systems are limited in their ability to manage hun-
dreds of thousands of files,

• In practice, managing hundreds of thousands of files is
cumbersome and error-prone,
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• Reading the data back using a different number of pro-
cesses than the analysis simulation requires redistribution
and reshuffling of the data, negating the advantage over
more complex collective I/O strategies.

The default I/O strategy in HACC is to have each process write
data into a distinct region within a single file using a custom,
self-describing file format. Each process writes each variable
contiguously within its assigned region. On supercomputers
having dedicated ION, HACC instead uses a single file per
ION. The current implementation of HACC provides the
option of using MPI I/O (collective or non-collective) or
POSIX (non-collective) I/O routines. Additionally, GenericIO
implements cyclic redundancy code (CRC) by adding it to the
end of the data array being written [Habib et al., 2014].

1) HACC HDF5 and EFF implementation: Since HDF5 is
a self-describing hierarchal file format, much of the “metadata”
used in the current implementation of HACC, was automati-
cally handled by HDF5. Thus, using HDF5 greatly reduces
the internal bookkeeping and file construction required by
HACC when compared to using POSIX or MPI-IO. The use
of offsets as pointers to variables (note that these offsets
are stored within the HACC file) is eliminated in the HDF5
implementation by instead using datasets to store variables.
The HDF5 implementation stores HACC variables as datasets
in the file’s root group (/).

Associated with each variable’s dataset is the cyclic-
redundancy-check (CRC). The CRC uses the High-
Performance CRC64 Library from Argonne National
Laboratory. A CRC is computed for each variable, and
each processor computes the CRC for the portion of the
array residing on that process. Although the EFF stack
automatically performs a checksum from the ION to the disk,
this is not the case for HDF5 files by default. However, the
CRC can easily be implemented within the HDF5 file by
simply computing a CRC for the array (assuming no partial
writes are taking place) and writing the CRC as a dataset. The
reading program can then read the dataset, compute the CRC
for the read data and perform a comparison to the values
stored in the CRC dataset. The implied restriction is that the
layout of the array among the processors is the same for both
the writing and the reading of the arrays. Ensuring a matching
CRC for data written and data being read is important when
creating raw binary files because the file can be transferred
to a machine with a different endianness. Therefore, checks
have to be made to ensure the endianness conversions were
implemented correctly. In HDF5 however, the library will
convert and verify the byte-order automatically, so the use
of the CRC may no longer be necessary. The rest of the
implementation is fairly straightforward, with only a slight
modification of the original HDF APIs, Algorithm 1.

B. High-level I/O stack libraries

There is a desire to support legacy libraries on the EFF stack
that already make use of HDF5. The objective is to have the
high-level code manage the transaction requests and to isolate
the application code from the I/O stack.

Algorithm 1 HACC I/O stack scheme.
Require: Initialize EFF stack

1: while Output variables remain do
2: Establish a read context for operations on HDF5 file
3: Create a transaction object
4: Start a transaction
5: Create HDF5 objects associate with variable
6: Write variable
7: Finish transaction
8: Close transaction
9: Release container

10: end while
Require: Finalize EFF stack

Figure 3. HDF5 schema for NetCDF/EFF.

1) EFF netCDF implementation: NetCDF [NetCDF, 2016]
is a set of software libraries used to facilitate the creation,
access, and sharing of array-oriented scientific data in self-
describing, machine-independent data formats. A new set of
EFF netCDF APIs (denoted by a ’_ff’ suffix) were derived
from the original netCDF APIs, maintaining most of the
original functionality. However, the possible use of filters with
netCDF was disabled since this is currently not supported in
the EFF version of HDF5.

The non-EFF version of netCDF added dimensions to
variables by the use of HDF5 Dimension Scale APIs. Storing
dimensions with coordinate variables (variables used as a
dimension scale for a dimension of the same name) is intuitive
and is self-describing for applications that access the file
directly through HDF5. However, this approach introduces
several dependencies between datasets and attributes that do
not fit well with the IOD transaction model. In addition, it
introduces many special cases that must be handled, increasing
the difficulty of implementation. Finally, there is currently
no EFF implementation of the Dimension Scale APIs and
implementing them would be difficult due to the transaction
model.

Since backward compatibility was not of a concern, i.e.
having netCDF/EFF datasets (containers/files) being accessed
independently of the netCDF/EFF API, the existing netCDF4
schema for HDF5 was abandoned in order to simplify the
implementation. All variables and dimensions were imple-
mented as HDF5 datasets, all groups as HDF5 groups, and all
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attributes as HDF5 attributes. As a convention, all dimensions
have the string DIM_ prepended to the name in HDF5, all
variables have the string VAR_ prepended, and all attributes
have the string ATT_ prepended. Variables have an HDF5
attribute DIMENSION_LIST, invisible to the netCDF API,
that stores references to the dimensions for the variable, Figure
3. Dimensions are implemented as a scalar dataset of type
H5T_STD_U64LE, where the value indicates the dimension
length or all 1s (i.e. (uint64_t)(int64_t)-1) to indicate an
unlimited dimension. This implementation avoids all name
conflicts without having to add any special cases to the
code, and also allows the removal of code paths for handling
coordinate variables as a special case, instead treating them as
any other variable. Other EFF additions to netCDF included

• Support for unlimited dimensions, but only for collective
access and only for the slowest changing dimension,

• "Links" from variables to their dimensions, allowing the
variables to be queried about their dimensions,

• Support for multiple server processes and nodes.
Additionally, the global EFF stack variables are passed as
arguments to the NetCDF and from the application and allow
access to all the EFF stack variables: read context identifier,
version number, event stack identifier and transaction identi-
fier.

2) EFF Parallel I/O implementation: A typical applica-
tion library which uses netCDF is the software associated
with the Accelerated Climate Modeling for Energy (ACME)
[ACME, 2016]program. ACME uses the package Parallel I/O
(PIO) [PIO, 2016] to perform I/O which, in turn, uses as its
backend the netCDF file format. Since the global EFF stack
variables are passed as arguments to netCDF, the EFF stack
parameters are controlled from within PIO. This allows for a
PIO API to call multiple netCDF APIs and to use the same
or different transactions depending on which set of netCDF
calls are made within the PIO API. The transaction number is
initialized in the application code and is then automatically
incremented as needed within the EFF PIO APIs. Hence,
transaction management is handled in the PIO library, but it
is still accessible to the application.

Exposing the event stack identifier allows the application
to use asynchronous I/O. To do this, the application creates
an event stack and passes it to an operation that can be
asynchronous. At the point in the future when the application
needs that operation to be finished, it can use HDF5 EFF
APIs H5ESwait or H5ESwait_all to block until it is completed.
Even if no event stack is passed to some metadata operations,
netCDF will use an internal event stack to issue asynchronous
operations that can run concurrently, improving performance.
In this case, netCDF will wait on all operations before return-
ing. Similar to the netCDF convention, all new EFF PIO C
APIs are indicated by appending a “_ff ” to the C function
names. The Fortran EFF PIO APIs were implemented by
overloading the current Fortran PIO APIs, hence if the optional
parameters are not present then PIO well automatically default
to the non-EFF netCDF APIs.

PIO expects as input from the application the partitioned
data arrays for each process. Additionally, PIO has the option
for requesting a subset of the CN that will perform the I/O.

Hence, PIO aggregates the I/O from each process to only a
subset of processes for I/O. The I/O processes then use netCDF
APIs to carry out the I/O. PIO implements two methods for
aggregating the I/O from all the processes to the subset of
I/O processes. In the box method, each compute task will
transfer data to one or more of the I/O processes. For the
subset method, each I/O process is associated with a unique
subset of compute processes for which each compute process
transfers data to only one I/O process [Edwards et al., 2016].
In general, the subset method reduces the overall communica-
tion cost when compared to the box method.

Additionally, since PIO has the capability of using a subset
of processes for I/O, EFF_init (an EFF HDF5 API used to
start the EFF stack) uses the MPI sub-communicator group
so that only those processes involved in I/O will initialize
the EFF stack. This initialization of the EFF stack happens
automatically when the I/O MPI sub-communicator is created
in PIO and it is finalized when this same sub-communicator
is freed in PIO.

V. CONCLUSIONS

The increase from petascale to exascale for storage and I/O
requires a new approach to the architecture because it is not
possible to simply scale past systems. This work highlights
challenges and issues that must be addressed when porting
current application codes to a transaction model for I/O. The
transaction model for exascale I/O is a novel technique, and
POSIX developers may find programming in an environment
in which data becomes readable only after commit quite
unnatural. However, some relaxation, for example, to provide
visibility of one’s own uncommitted updates, may lead to an
easier transition for application and middleware developers.
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