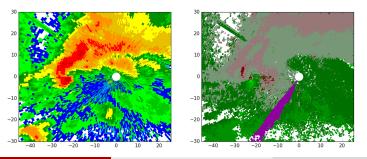
Klimatic: A Virtual Data Lake for Harvesting and Distribution of Geospatial Data

Tyler J. Skluzacek, Kyle Chard, Ian Foster PDSW-DISCS 2016

November 14, 2016



Tyler J. Skluzacek, Kyle Chard, Ian Foster PIKlimatic: A Virtual Data Lake for Harvesting

November 14, 2016 1 / 21

Motivation

- Disparate research datasets stored in dark, siloed repositories.
- Researchers want robustness.
- Data hidden across HTTP and FTP servers (Globus GridFTP).
- Scalable architecture needed to find, index, integrate, and distribute.
- Geospatial data especially inaccessible to users (format, size, complexity).
 - Ex: NetCDF

Tyler J. Skluzacek, Kyle Chard, Ian Foster PI<mark>Klimatic: A Virtual Data Lake for Harvesting</mark>

Problem Constraints

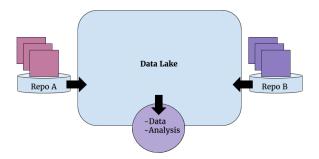
- Data integrity must be upheld.
 - *i.e.*, data in system = data in wild
- Non-standard naming and coding conventions.
- Available data storage.
- Must be scalable.
- Intuitive queries (or lack thereof for lay(wo)man).
- The process should be automated.

Proposed Solution

Tyler J. Skluzacek, Kyle Chard, Ian Foster PI<mark>Klimatic: A Virtual Data Lake for Harvesting</mark>

3

(日) (同) (三) (三)


Enter Klimatic

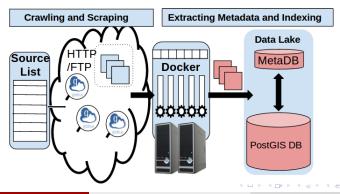
- Quick access for researchers to search a world of data.
- Allows simple querying across datasets.
- Automated integration of compatible datasets into necessity-sized chunks.
- Introduction of the container-based Virtual Data Lake.

The Data Lake

"The term data lake has been coined to convey the concept of a centralized repository containing virtually inexhaustible amounts of raw (or minimally curated) data that is readily made available anytime to anyone".

¹I. Terrizano, et al. Data Wrangling: The Challenging Journey from the Wild to the Lake. CIDR. 2015. November 14, 2016 6 / 21

Tyler J. Skluzacek, Kyle Chard, Ian Foster P<mark>I</mark>Klimatic: A Virtual Data Lake for Harvesting


The "Virtual" Data Lake

- Data Lake that conflates locally stored data with remote, indexed data
- Metadata for all data stored locally; only important* raw data stored.
- *Importance based on relevance (-rel), size (-sz), and provider (-prv).
- Container Model: Extractor instances run in Docker containers.

Architecture: Collection

- Set number of data extraction instances (Docker containers).
- Extraction instance scans source from list-extracts all files.
- Check HTTP/FTP for nested repos/links. Append to list.
- Create searchable *TS_Vector* with metadata attributes of data.
- Store metadata, consider dataset for raw storage vs. eviction.

Scraping HTTP vs. Globus GridFTP

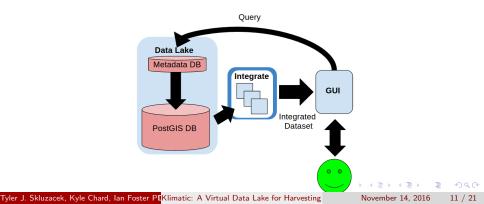
HTTP:

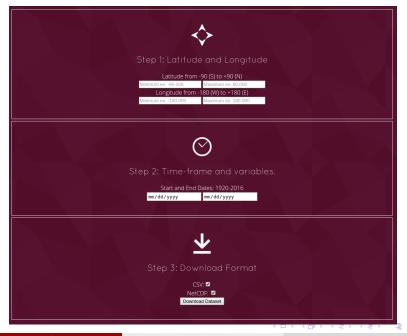
- Utilize existing tools (Scrapy) and in-house tools to pull data.
- Trump wingdings and Javascript-embedded files.
- Scrape *context* in addition to content (*in early stages*).

Globus:

- Spawn list of candidate files stored in publicly-accessible endpoints.
- Use Globus Transfer API (Python) to pull all candidate datasets from the repositories.
- Path is "Globus User ID" followed by file system's path to data.

Metadata Extraction

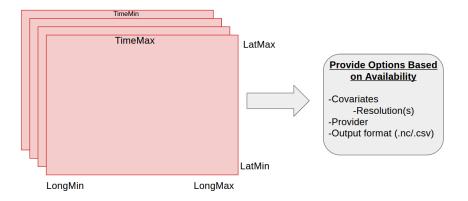

- Open each file to find key attributes.
- Search header for human-collected keywords.
 - Latitude: stlat, lats, lati, stdlat, y, lt, north, NS, and N.
- Standardize attributes before insertion into metaDB.
- Create searchable indexed string: latMin55.232latMax66.000lonMin0.000lonMax180.000resolution12km...


10 / 21

- Compute and compare checksums.
- Evict or store?

Architecture: Distribution

- User requests desired traits of data from GUI. Query sent to data lake.
- If possible, pull all candidate for an integrated dataset.
 - Requested datasets in vector-format fitted to grid.
- Datasets integrated on 'snap-to-larger' basis.
- Delivery in desired format.



Tyler J. Skluzacek, Kyle Chard, Ian Foster PI<mark>Klimatic: A Virtual Data Lake for Harvesting</mark>

November 14, 2016 12 / 21

Query: Building a Bounding Box

Tyler J. Skluzacek, Kyle Chard, Ian Foster PEKlimatic: A Virtual Data Lake for Harvesting November 14, 2016 13 / 21

3

Integration: Identify Necessary Data

"I want precipitation data for every Tuesday in December on/after the 10th, at latitudes 11-13 and longitude 20".

Latitude		Time	Temp_Hi	Precip_in		
13		Longitude	Time	Temp Hi	Precip in	
13			12/10/93			\leftarrow
13		20	12/11/93	0	8	
13		20	12/12/93	32	1	
13		20	12/13/93	17	8	
13		20	12/14/93	9		
13		20	12/15/93	22	8	
13	12					
13	12					<hr/>
13	12					
13	12					
13	12					
13	12				0	
13	12					
13	12					
13	12					<u> </u>
13	12					V
13	12					
13	12					
13	12					
13	12					
13	12					
13	12					
13	12					< <u> </u>
13						
13	12					
13	12					
13	12					
13	12					
13	12					
13	12					
	12				8	
	12					
	12	20	01/10/94	1 1	6	

Time			Precip in	
12/10/9		Latitude	Longitude	Precip_in
12/17/9			20	3
12/24/9				4
12/31/9			20	7
01/07/9			20	5
01/14/9				
01/21/9			20	4
01/28/9			20	6
02/04/9	1 01/28/94	11	20	
02/11/9			20	2
02/18/9	1 02/11/94	11	20	7
02/25/9			20	
03/04/9	02/25/94	11	20	1
03/11/9	4 03/04/94	11	20	8
03/18/9	4 03/11/94	11	20	
03/25/9	1 03/18/94	11	20	Ę
04/01/9	03/25/94	11	20	1
04/08/9	4 04/01/94	11	20	
04/15/9	4 04/08/94	11	20	1
04/22/9	4 04/15/94	11	20	(
04/29/9	4 04/22/94	11	20	
05/06/9	04/29/94	11	20	3
05/13/9	05/06/94	11	20	2
05/20/9	05/13/94	11	20	4
05/27/9	05/20/94	11	20	8
06/03/9		11	20	5
	06/03/94	11	20	8

Tyler J. Skluzacek, Kyle Chard, Ian Foster PI<mark>Klimatic: A Virtual Data Lake for Harvesting</mark>

Integration: Snap to Standard Grid and Merge

- Snap to the grid of the less-granular data.
- Reduced datasets merged into one.
- Accompanied by header to ensure integrity.

Latitude		Longitude	Time	Precip_in	
	13	Latitude	Longitude	Time	Precip_in
	13	12	20	12/10/93	2
	13	12	20	12/17/93	1
	13	12	20	12/24/93	2
		12	20	12/31/93	8

Latitude	Longitude	Time	Precip_in
11	20	12/10/93	0
11	20	12/17/93	2
11	20	12/24/93	3
11	20	12/31/93	6

Candidate A: reduced

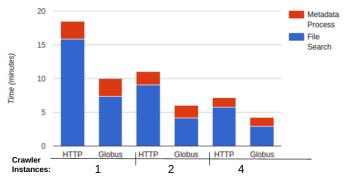
Candidate B: reduced

Latitude	Longitude	Time		Precip_in					Origin A
13	Latitude	Longitude		Time	Precip_in				В
13		L2 Latitude		Longitude	Time	Precip in			-
13		12	11	2	0 12/10/93	3	0		C
13		12	11	. 2	0 12/17/93	8	2		
	1	12	11	. 2	0 12/24/93	8	3		Distribut
			11	. 2	0 12/31/93	3	6		
		-							

Header.txt: Provenance-tracking

Tyler J. Skluzacek, Kyle Chard, Ian Foster PI<mark>Klimatic: A Virtual Data Lake for Harvesting</mark>

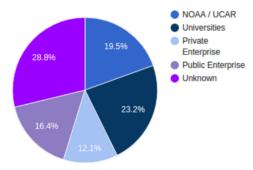
Evaluation


Tyler J. Skluzacek, Kyle Chard, Ian Foster PEKlimatic: A Virtual Data Lake for Harvesting November 14, 2016 16 / 21

• • • • • • • • • • •

3

Preliminary Results: Evaluation


- Run in curated experimental sandbox with known access paths.
- 1-4 Docker containers instantiated in a single Linux 14.04 VM (16GB, 500GB).

Dataset Ingest Times: 75GB (750x100MB Files)

Preliminary Results: Coverage

- 10,002 datasets extracted (\sim 11.5 TB).
- Every continent (included Anarctica) has at least 1,000 datasets.
- 20,000 world carbon data datasets ready for indexing (\sim 30,000 total).

Conclusion

Tyler J. Skluzacek, Kyle Chard, Ian Foster PEKlimatic: A Virtual Data Lake for Harvesting November 14, 2016 19 / 21

A D > A B > A B

æ

Conclusions and Future Work

- Klimatic is an effective architecture for large scientific data.
- Container-model is scalable across containers across nodes.
- Robust coverage thus far.

Next Steps:

- Expand to other sciences' data needs (first up: materials science).
- Implementation of event-based update engine for Globus GridFTP.
- Add support for shapefiles (bounding-box becomes "bounding-shape")

20 / 21

• Classify data based on *content* and *context*.

Questions?

Tyler J. Skluzacek, Kyle Chard, Ian Foster PIKlimatic: A Virtual Data Lake for Harvesting Nove

November 14, 2016 21 / 21

3

< 🗇 🕨