
Suggested line of text (optional):

WE START WITH YES.

GET OUT OF THE WAY!
APPLYING
COMPRESSION TO
INTERNAL DATA
STRUCTURES

erhtjhtyhy

ROB LATHAM
Math and Computer Science
Argonne National Laboratory

MATTHIEU DORIER ROB ROSS

14 November 2016

PDSW-DISC, Salt Lake City, UT

SYSTEM SOFTWARE AND RESOURCES

 “Limited amounts of memory and low memory/flop ratios will make processing

virtually free. In fact, the amount of memory is relatively decreasing, scaling far

worse than computation.” -- Horst Simon

 Today: two options for system software when memory needs grow “too large”:

– Hard error (ENOMEM)

– Soak up all memory and laugh at application.

 Third option: degrade to slower but less memory-intensive approach

2

System Cores/Node RAM/Node RAM//Core

Intrepid 4 2 GiB 2

Mira 16 16 GiB 1

Theta 64 16 GiB (MCDRAM) .25

ROMIO: EXPECTATIONS VS EXPERIENCE

 ROMIO processes MPI datatypes by

“flattening”

– Flattened representation not

concise

 Users only recently running into

memory consumption issues

– Large vectors

– Unstructured “index” types

 What options can we pursue?

3

MANAGING COMPRESSED CHUNKS

4

• Random access

• Maintain one

decompressed

block

https://xgitlab.cels.anl.gov/robl/data_structures

ASIDE: BLOSC SHUFFLE IMPACT

 Blosc framework compresses data,

can also shuffle data to make it more

compression friendly

 Straight-up compression: 0.32

 8-byte shuffle: 0.02

 We used lz4 but easy to switch

compression algorithms.

 http://blosc.org/

5

Shuffled bytes

APPROACH: COMPRESSED FLATTENING

 Replace C arrays with either comparray or gramarray:

– Before:
• ADIO_Offset index[], blocklengths[]
• index[i] = j;
• blocklengths[i] = next;

– After:
• comparray index, blocklengths
• ADIOI_Flatlist_index_set(flat, i, j);
• ADIOI_Flatlist_blocklens_set(flat, i, next);

– Convenience routines on top of ROMIO-level caching

• ROMIO access pattern either runs through linearly or repeatedly consults

a small number of elements

 6

EXISTING APPROACH: NOT A PROBLEM…
UNTIL IT IS

7

Zoomed-in

COMPARRAY CPU COST

8

COMPRESS EVEN HARDER

 Many (not all) MPI datatypes regular patterns

 Can describe with a (compact) grammar

 Significantly more expensive

 Significantly higher compression

– Except for irregular descriptions (next slide)

 Interface only allows for (forward/backward)

iteration

– Fine for ROMIO. Maybe too restrictive for

others?

 Gramarray:

https://bitbucket.org/mdorier/gramarray

9

8,4

4,,0S

4} 8, 4, 8, 4, {0,:

28} 24, 16, 12, 4, {0,:

2





A

A

relative

original

WORKLOADS

 Constructs a large vector-of-resized type:

Hdf5 “big-io”

10

Peak Memory Execution Time

unmodified MPICH 62,700 MiB 66.88 sec

Compressed array 706.8 MiB 84.15 sec

Gramarray 26.56 MiB 2008 sec

WORKLOADS

Peak Memory Execution Time

Unmodified MPICH 213136 KiB 0.28 sec

Compressed Array 214272 KiB 0.36 sec

Grammarray 214624 KiB 0.56 sec

MOAB unstructured mesh conversion

11

 A worst-case workload:

– Too irregular for Grammar-based approach

– Not big enough for compressed approach to benefit

WHAT’S NEXT?

 Replace more ROMIO arrays with compressed-arrays

– Tunable threshold before flipping over to compressed version

 Will it work in other contexts?

– Compressed-arrays: https://xgitlab.cels.anl.gov/robl/data_structures

– Gramarray: https://bitbucket.org/mdorier/gramarray

12

