GET OUT OF THE WAY!
APPLYING

COMPRESSION TO
INTERNAL DATA
STRUCTURES

ROB LATHAM MATTHIEU DORIER
Math and Computer Science
Argonne National Laboratory

14 November 2016
PDSW-DISC, Salt Lake City, UT

AAAAAAAAAAAAAAAAAA

ROB ROSS

SYSTEM SOFTWARE AND RESOURCES

» “Limited amounts of memory and low memory/flop ratios will make processing
virtually free. In fact, the amount of memory is relatively decreasing, scaling far
worse than computation.” -- Horst Simon

= Today: two options for system software when memory needs grow “too large”:
— Hard error (ENOMEM)
— Soak up all memory and laugh at application.

= Third option: degrade to slower but less memory-intensive approach

Cores/Node RAM/Node RAM//Core

Intrepid 4 2 GiB
Mira 16 16 GIiB 1
Theta 64 16 GiB (MCDRAM) .25

2 Argonne &

ROMIO: EXPECTATIONS VS EXPERIENCE

» ROMIO processes MPI datatypes by

“flattening” C code describing type:
— Flattened representation not MPI_Type vector(5, 2, 10,
concise MPI INT, &vec type);
. notional flattened representation:
= Users only recently running into (0,8),(40,8),(80,8),(120,8), (160, 8)
memory consumption issues C library representation:
~ arge vectors indices[] = {0, 40, 80, 120, 160}
_ “: ” ln lceS = ’ ’ ’ ’
Unstructured “index” types blocklens[] = {8, 8, 8. 8, &)

= What options can we pursue?

AAAAAAAAAAAAAAAAAA

MANAGING COMPRESSED CHUNKS

« Random access

« Maintain one
decompressed
block

DECOMPRESSED
WORKING BLOCK

INTERVAL TREE OF COMPRESSED DATA

LOW HIGH LOW HIGH LOW HIGH
1MH1M ZM‘ nanM‘

:H L]

COMPRESSED ARRAY DATA STRUCTURE

https://xgitlab.cels.anl.gov/robl/data_structures
4 Argonne &

AAAAAAAAAAAAAAAAAA

ASIDE: BLOSC SHUFFLE IMPACT

» Blosc framework compresses data,
can also shuffle data to make it more
compression friendly

» Straight-up compression: 0.32
= 8-byte shuffle: 0.02

= We used |z4 but easy to switch
compression algorithms.

= http://blosc.org/

compression ratio

Shuffle effectiveness
0.8

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shuffled bytes

Argonne &

APPROACH: COMPRESSED FLATTENING

» Replace C arrays with either comparray or gramarray:
— Before:
« ADIO Offset index[], blocklengths][]
e index[1i] = J;
 blocklengths[i] = next;
— After:
e comparray index, blocklengths
« ADIOI Flatlist index_set(flat, i, j);
« ADIOI Flatlist blocklens set(flat, i, next);
— Convenience routines on top of ROMIO-level caching
« ROMIO access pattern either runs through linearly or repeatedly consults
a small number of elements

6 Argonne &

EXISTING APPROACH: NOT A PROBLEM...
UNTIL IT IS

RSS (MiB)

600

500

400

300 p

200

100 F

Memory to process VECTOR

Comearray Memory —w—

Master Memory ———]

0 10 20 30 40 50 60
Vector Count (millions)

70

RSS (Kib)

3000

2500 p

2000 p

1500 F

1000 }

500 |

Memory to process Vector

Master Memory =——t=—
Comparray Memory ==

50 2500 125000 6.25x10°
Vector Count

Zoomed-in

AAAAAAAAAAAAAAAAAA

COMPARRAY CPU COST

Time to process Vector Time to process VECTOR
0.5 ' '
! ') ') ' " 0.45 Master Time =——+—
35 } '04 [Comparray Time —w—
°| 0.35 |
g 257 03 }
s 2 0.25 }
@ .
E 15} 02 }
1} 0.15 }
05 | Master Time =———=— . 01
0 . Comparray Time —u— 0.05 p
0 10 20 30 40 50 60 70 0

1 50 2500 125000 6.25x10°6

Vector Count (millions) Vector Count

8 Argonne &

COMPRESS EVEN HARDER

= Many (not all) MPI datatypes regular patterns
= Can describe with a (compact) grammar

= Significantly more expensive original {O, 4.12.16, 24, 28}
= Significantly higher compression

— Except for irregular descriptions (next slide) relative {O, 4,8,4,8, 4}

» Interface only allows for (forward/backward) 2
iteration S—0,A%4
— Fine for ROMIO. Maybe too restrictive for A — 4 8
others?

= Gramarray:
https://bitbucket.org/mdorier/gramarray
9

AAAAAAAAAAAAAAAAAA

WORKLOADS
Hdf5 “big-io”

= Constructs a large vector-of-resized type:

______________|Peak Memory

unmodified MPICH 62,700 MiB 66.88 sec
Compressed array 706.8 MiB 84.15 sec
Gramarray 26.56 MiB 2008 sec

10 Argonne &

WORKLOADS

MOAB unstructured mesh conversion

= A worst-case workload:
— Too irregular for Grammar-based approach
— Not big enough for compressed approach to benefit

| PeakMemory

Unmodified MPICH 213136 KiB 0.28 sec
Compressed Array 214272 KiB 0.36 sec
Grammarray 214624 KiB 0.56 sec

11 Argonne &

WHAT’S NEXT?

» Replace more ROMIO arrays with compressed-arrays
— Tunable threshold before flipping over to compressed version

= Will it work in other contexts?
— Compressed-arrays: https://xgitlab.cels.anl.gov/robl/data_structures
— Gramarray: https://bitbucket.org/mdorier/gramarray

12 Argonne &

