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Motivation
I/O	investigation	goals?	
– Benchmarking	systems	
– Tuning	application	behaviour	
– Tuning	software	stack		
– Changing	paradigm	
– Changing	hardware	technology
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Motivation
Working	with	a	mini	application	or	proxy	is	less	cumbersome	
and	more	streamlined,	not	to	mention	more	portable	
Developing	and	maintaining	a	representative	proxy	for	every	
application	is	time	consuming	and	probably	redundant	
Ideally	we	would	like	to	experiment	while	minimising	time	
spent	making	code	changes	and	writing	new	
implementations	
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Outline
Background:	Proxy	app	and	I/O	library	
Replication	Components	
Case	Study	
Conclusion
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Background:	MACSio
“Multi-purpose	Application-Centric,	Scalable	I/O	Proxy	
Application”			
Two	key	characteristics:	
– Level	of	Abstraction:	POSIX,	MPI-IO,	SILO,	HDF5	and	beyond…		
– Degree	of	Flexibility:	dump	type,	dataset	composition,	user	
defined	data	objects		

Multi-purpose	achieved	through	plugin	based	design,	if	you	have	a	
library	or	interface	to	work	with,	write	a	plugin!	
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Background:	TyphonIO
APPLICATION

HIGH	LEVEL	I/O	LIBRARY

MIDDLEWARE

PARALLEL	FILE	SYSTEM

STORAGE	HARDWARE

TyphonIO

HDF5

SCIENTIFIC	DATA	MODEL	

PARALLEL	INTERFACE
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Background:	TyphonIO
Overlays	a	hierarchical	data	
model	on	the	parallel	I/O	
interface	
Designed	to	use	HDF5	in	a	
consistent	way	that	can	be	
optimised	for	the	data	model,	
e.g.	efficient	use	of	chunking	
in	the	mesh	structure

Chunked	Object

File

State	1 State	2..N

Mesh

Material

Quants

Vargroup

Variable
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Replication:	Profiling
Darshan	I/O	characterisation	
chosen	for	lightweight	profiling		
Instrumentation	overhead	
indistinguishable	from	
machine	noise	in	our	
experiments	
Profiling	produces	counters	for	
POSIX,	MPI-IO,	HDF5

Runtime	
(seconds)

1	Node 64	Nodes

Uninstrumented 309.25		 352.33

Instrumented 307.43 352.29
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Replication:	Parameter	Generation
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Replication:	Parameter	Generation
Filesize	=		

Processors	(	PartSize	(	α	Variables	+	β	)	+γ	Variables	+	δ	)	+	ψ	Variables	+	η	

MACSio	currently	weak	scales,	so	increasing	processor	count	increases	the	file	size	
linearly	
Similarly,	part	size	and	dataset	variable	count	give	a	linear	increase	in	total	bytes	written			
Combining	the	linear	equations	gives	the	equation	above	to	calculate	a	good	estimate	
for	the	resultant	file	size	based	on	dataset	composition	
Constants	α,	β,	γ,	δ,	ψ,	η	are	derived	experimentally	from	a	dataset	composition	scaling	
study
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Replication:	Parameter	Generation
Extracting	counters	such	as	BYTES_WRITTEN,		
NUM_PROCS,	COLL_WRITES,	[OPEN/
CLOSE]_TIMESTAMP	is	enough	to	generate	an	
input	to	MACSio	for	a	similar	dataset	
composition	and	I/O	pattern	
In	particular,	using	timestamps	to	distribute	
load	across	the	simulation	runtime	is	important	
to	give	an	accurate	representation	of	typical	
‘bursty’	I/O	hotspots	spread	out	across	runtime
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Case	Study:	Bookleaf
2D	unstructured	Lagrangian	hydrodynamics	
application	
Fixed	checkpoint	scheme:	two	per	simulation	
The	input	deck	used	solves	the	Noh	verification	
problem	for	ideal	gases		
I/O	is	handled	by	TyphonIO
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Experimental	Setup
ARCHER	
- 4920	node	CRAY	XC30	
- Two	12-core	Ivy	Bridge	processors	per	node	
(118,080	cores	total)	

- Three	Lustre	filesystems:	
- 12	OSSs		
- 4	OSTs/OSS	
- 10	4TB	Discs/OST	(RAID6)	
- 1	MDS	+	1	MDT	with	14	600GB	discs	(RAID1+0)	
- 10	LNet	Router	nodes	with	overlapping	routing	
paths
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Experimental	Setup:	Input	Parameters
Part	size	represents	the	
volume	of	data	written	
from	each	rank	
Wait	time	is	a	basic	time	
buffer	between	
consecutive	file	accesses

Nodes Part Size (Bytes) Wait Time (s)

1 404 320 266
2 202 205 120
4 101 148 53
8 50 619 22
16 25 355 11
32 12 723 7
64 6407 5
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File	Access	Pattern
File	access	times	are	offset	
by	the	initial	setup	in	
Bookleaf	
Accounting	for	this	overhead	
is	not	necessary	to	
accurately	represent	the	I/O	
pattern	so	we	don’t	factor	it	
in,	but	this	could	easily	be	
introduced

MACSio 1

MACSio 2

0 50 100 150 200 250 300 350

Bookleaf 1

Bookleaf 2

Time (s)
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Results:	I/O	Time
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Results:	I/O	Time
Total,	cumulative	and	
slowest	individual	I/O	time	
remain	consistent	for	the	
original	and	replicated	runs	
Looking	at	a	wider	range	of	
Darshan	counters,	access	
sizes	and	frequencies	are	
also	consistent	

Slowest	Individual	MPIIO	Operation
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Results:	Testing	Independent	vs	Collective	I/O	with	MACSio

Using	the	MACSio	replication,	a	
parameter	tweak	can	be	used	to	
manipulate	I/O	library	
behaviour	
The	switch	to	use	collective	
buffering	has	a	very	predictable	
effect,	reducing	the	number	of	
small	write	operations	and	
lowering	the	overall	I/O	time	 1 2 4 8 16 32 64
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Conclusion
We	use	a	proxy	application	and	high	level	library	to	mimic	
an	I/O	pattern	based	off	as	lightweight	profiling	as	possible		
I/O	characterisation	and	a	small	amount	of	application	
familiarity	is	enough	to	produce	a	proxy	that	is	workable		
Once	a	parameter	set	has	been	identified,	we	can	chop	and	
change	strategy,	library	and	platform	with	a	reasonable	
amount	of	simplicity
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Next	Steps
More	irregular	I/O	patterns	from	range	of	
applications	
Exercise	different	parallel	interfaces	
Multiple	concurrent	workloads	
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Thank	You	
Any	Questions?		

J.Dickson@warwick.ac.uk
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