\\
"N\

Replicating HPC 1/0 Workloads With Proxy Applications WARWICK

James Dickson, Steven Wright, Stephen Jarvis - University of Warwick

Satheesh Maheswaran, Andy Herdman - UK Atomic Weapons Establishment

Marc C. Miller - Lawrence Livermore National Laboratory

Motivation

/0O investigation goals?

— Benchmarking systems

— Tuning application behaviour

— Tuning software stack

— Changing paradigm

— Changing hardware technology

Motivation

Working with a mini application or proxy is less cumbersome
and more streamlined, not to mention more portable

Developing and maintaining a representative proxy for every
application is time consuming and probably redundant

Ideally we would like to experiment while minimising time
spent making code changes and writing new
implementations

Outline
Background: Proxy app and 1/O library

Replication Components
Case Study
Conclusion

Background: MACSio

“Multi-purpose Application-Centric, Scalable 1/O Proxy
Application”

Two key characteristics:
— Level of Abstraction: POSIX, MPI-IO, SILO, HDF5 and beyond...

— Degree of Flexibility: dump type, dataset composition, user
defined data objects

Multi-purpose achieved through plugin based design, if you have a
library or interface to work with, write a plugin!

Background: TyphonlO

APPLICATION

SCIENTIFIC DATA MODEL
HIGH LEVEL I/O LIBRARY

PARALLEL INTERFACE
MIDDLEWARE

PARALLEL FILE SYSTEM

STORAGE HARDWARE

TyphonlO
HDF5

Background: TyphonlO

Overlays a hierarchical data
model on the parallel I/0
interface

Designed to use HDF5 in a
consistent way that can be
optimised for the data model,
e.g. efficient use of chunking
in the mesh structure

File

I
State 1

|
State 2..N

I— Mesh Chunked Object

Material

— Quants

Vargroup

Variable

Replication: Profiling

» Darshan 1I/O characterisation

chosen for lightweight profiling Runtime 64 Nodes
» |nstrumentation overhead W-

indistinguishable from Unmstrumented 309.25 352.33

machine noise in our

experiments

» Profiling produces counters for
POSIX, MPI-IO, HDF5

Replication: Parameter Generation

Application Darshan YAML MACSio
=> => =>
Run Log Log Parameters
¥

Access
Diagram

Replication: Parameter Generation

Filesize =
Processors (PartSize (a Variables + B) +y Variables + 6) + Y Variables + n

MACSio currently weak scales, so increasing processor count increases the file size
linearly

Similarly, part size and dataset variable count give a linear increase in total bytes written
Combining the linear equations gives the equation above to calculate a good estimate
for the resultant file size based on dataset composition

Constants a, B, v, 6, Y, n are derived experimentally from a dataset composition scaling
study

10

Replication: Parameter Generation

; bookleaf_1536_3880532.darshan.gz.yaml % ;

- CHARACTERISTICS:

ACCESS_MODE: w
MPIIO_OPEN_TIME: 133.37006399999999
MPIIO_READ_TIME: 0.0
MPIIO_WRITE_TIME: 58.72207
POSIX_OPEN_TIME: 133.36487499999998
POSIX_READ_TIME: 0.0
POSIX_WRITE_TIME: 133.302945

FILE: initial_dump.h5

MPI_COUNTERS:
MPIIO_ACCESS1_ACCESS: '10672'
MPIIO_ACCESS1_COUNT: '1280°
MPIIO_ACCESS2_ACCESS: '10080'
MPIIO_ACCESS2_COUNT: !
MPIIO_ACCESS3_ACCESS:
MPIIO_ACCESS3_COUNT:
MPIIO_ACCESS4_ACCESS: '5152
MPIIO_ACCESS4_COUNT: '612'
MPIIO_BYTES_READ: '@’
MPIIO_BYTES_WRITTEN: '133534106'
MPIIO_COLL_OPENS: '1536'
MPIIO_COLL_READS: '@’
MPIIO_COLL_WRITES: '@’
MPIIO_FASTEST_RANK: '1450'
MPIIO_FASTEST_RANK_BYTES:
MPIIO_F_CLOSE_TIMESTAMP: '186

» Extracting counters such as BYTES WRITTEN,
NUM_PROCS, COLL_WRITES, [OPEN/
CLOSE]_TIMESTAMP is enough to generate an
input to MACSio for a similar dataset
composition and I/O pattern

» In particular, using timestamps to distribute
load across the simulation runtime is important
to give an accurate representation of typical
‘bursty’ 1/0O hotspots spread out across runtime

11

Case Study: Bookleaf

>

2D unstructured Lagrangian hydrodynamics
application

Fixed checkpoint scheme: two per simulation

The input deck used solves the Noh verification
problem for ideal gases

/0 is handled by TyphonlO

12

Experimental Setup

» ARCHER
- 4920 node CRAY XC30

- Two 12-core lvy Bridge processors per node
(118,080 cores total)

- Three Lustre filesystems:

12 OSSs

4 OSTs/0SS

10 4TB Discs/OST (RAID6)

1 MDS + 1 MDT with 14 600GB discs (RAID1+0)

10 LNet Router nodes with overlapping routing
paths

Experimental Setup: Input Parameters

Part size represents the
volume of data written
from each rank

Wait time is a basic time
buffer between
consecutive file accesses

Nodes

Part Size (Bytes)

Wait Time (s)

1
2
4
8
16
32
64

404 320
202205
101 148
50619

25355

12723

6407

266
120
23
22
11
7

5

14

File Access Pattern

File access times are offset

by the initial setup in MACSio 2 | —_
Bookleaf MACSio 1 | —

Accounting for this overhead Boodenfo |

IS not necessary to Bookleaf 1 - o

accurately represent the 1/0 0 50 100 150 200 250 300 350
pattern so we don’t factor it Time (s)

in, but this could easily be

introduced
15

Results: I/0 Time

Absolute I/0 Time

T
128
64
= 32
=

= 16

—o— MACSio #1

8 —a— MACSio #2

—e— Bookleaf #1

4 —— Bookleaf #2 | |
| | | | | |

1 2 4 8 16 32 064
Nodes

Cumulative I/0 Time across all ranks

262,000

32,700 |

4,090 |

012

64

P

—o— MACSio #1
—=a— MACSio #2
—e— Bookleaf #1

—— Bookleaf #2 | |

17,000s
1,536 ranks

= 110s writing
per rank

8§ 16 32 64
Nodes

16

Results: I/0 Time

Total, cumulative and
slowest individual I/O time

Slowest Individual MPIIO Operation

64 |- 8
remain consistent for the .l |
original and replicated runs 16| |
Looking at a wider range of g P |

o — 47 |
Darshan counters, access - —— MACSio #1
. . 20 —= MACSio #2 ||
sizes and frequencies are | “e Bookleaf #1 ||
. —— Bookleaf #2
also consistent opb . =0

1 2 4 8 16 32 064
Nodes

Results: Testing Independent vs Collective 1/0 with MACSio

Using the MACSio replication, a
parameter tweak can be used to
manipulate I/0O library
behaviour 32

128 2

The switch to use collective ?;j/ 8|
buffering has a very predictable 2
effect, reducing the number of
small write operations and 0.5¢
lowering the overall I/O time

—eo— C(ollective #1
—a— Collective #2 ||
—e—Independent #1
—— Independent #2 ||

1 2 4 8§ 16 32 64
Nodes

Conclusion

We use a proxy application and high level library to mimic
an |/O pattern based off as lightweight profiling as possible

/O characterisation and a small amount of application
familiarity is enough to produce a proxy that is workable

Once a parameter set has been identified, we can chop and
change strategy, library and platform with a reasonable
amount of simplicity

19

Next Steps
More irregular I/O patterns from range of
applications
Exercise different parallel interfaces
Multiple concurrent workloads

20

Acknowledgements

» UK Atomic Weapons
Establishment Technical AWE

Outreach Programme %J

» UK Engineering and Physical E PS RC

Sciences Research Council

WARWICK

Thank You
Any Questions?

mailto:J.Dickson@warwick.ac.uk

