
Replicating	HPC	I/O	Workloads	With	Proxy	Applications
James	Dickson,	Steven	Wright,	Stephen	Jarvis	-	University	of	Warwick	

Satheesh	Maheswaran,	Andy	Herdman	-	UK	Atomic	Weapons	Establishment	

Marc	C.	Miller	-	Lawrence	Livermore	National	Laboratory

Motivation
I/O	investigation	goals?	
– Benchmarking	systems	
– Tuning	application	behaviour	
– Tuning	software	stack		
– Changing	paradigm	
– Changing	hardware	technology

2

Motivation
Working	with	a	mini	application	or	proxy	is	less	cumbersome	
and	more	streamlined,	not	to	mention	more	portable	
Developing	and	maintaining	a	representative	proxy	for	every	
application	is	time	consuming	and	probably	redundant	
Ideally	we	would	like	to	experiment	while	minimising	time	
spent	making	code	changes	and	writing	new	
implementations	

3

Outline
Background:	Proxy	app	and	I/O	library	
Replication	Components	
Case	Study	
Conclusion

4

Background:	MACSio
“Multi-purpose	Application-Centric,	Scalable	I/O	Proxy	
Application”			
Two	key	characteristics:	
– Level	of	Abstraction:	POSIX,	MPI-IO,	SILO,	HDF5	and	beyond…		
– Degree	of	Flexibility:	dump	type,	dataset	composition,	user	
defined	data	objects		

Multi-purpose	achieved	through	plugin	based	design,	if	you	have	a	
library	or	interface	to	work	with,	write	a	plugin!	

5

Background:	TyphonIO
APPLICATION

HIGH	LEVEL	I/O	LIBRARY

MIDDLEWARE

PARALLEL	FILE	SYSTEM

STORAGE	HARDWARE

TyphonIO

HDF5

SCIENTIFIC	DATA	MODEL	

PARALLEL	INTERFACE

6

Background:	TyphonIO
Overlays	a	hierarchical	data	
model	on	the	parallel	I/O	
interface	
Designed	to	use	HDF5	in	a	
consistent	way	that	can	be	
optimised	for	the	data	model,	
e.g.	efficient	use	of	chunking	
in	the	mesh	structure

Chunked	Object

File

State	1 State	2..N

Mesh

Material

Quants

Vargroup

Variable
7

Replication:	Profiling
Darshan	I/O	characterisation	
chosen	for	lightweight	profiling		
Instrumentation	overhead	
indistinguishable	from	
machine	noise	in	our	
experiments	
Profiling	produces	counters	for	
POSIX,	MPI-IO,	HDF5

Runtime	
(seconds)

1	Node 64	Nodes

Uninstrumented 309.25		 352.33

Instrumented 307.43 352.29

8

Replication:	Parameter	Generation

Application	
Run

Darshan	
Log

YAML	
Log

MACSio	
Parameters

Access		
Diagram

9

Replication:	Parameter	Generation
Filesize	=		

Processors	(PartSize	(α	Variables	+	β)	+γ	Variables	+	δ)	+	ψ	Variables	+	η	

MACSio	currently	weak	scales,	so	increasing	processor	count	increases	the	file	size	
linearly	
Similarly,	part	size	and	dataset	variable	count	give	a	linear	increase	in	total	bytes	written			
Combining	the	linear	equations	gives	the	equation	above	to	calculate	a	good	estimate	
for	the	resultant	file	size	based	on	dataset	composition	
Constants	α,	β,	γ,	δ,	ψ,	η	are	derived	experimentally	from	a	dataset	composition	scaling	
study

10

Replication:	Parameter	Generation
Extracting	counters	such	as	BYTES_WRITTEN,		
NUM_PROCS,	COLL_WRITES,	[OPEN/
CLOSE]_TIMESTAMP	is	enough	to	generate	an	
input	to	MACSio	for	a	similar	dataset	
composition	and	I/O	pattern	
In	particular,	using	timestamps	to	distribute	
load	across	the	simulation	runtime	is	important	
to	give	an	accurate	representation	of	typical	
‘bursty’	I/O	hotspots	spread	out	across	runtime

11

Case	Study:	Bookleaf
2D	unstructured	Lagrangian	hydrodynamics	
application	
Fixed	checkpoint	scheme:	two	per	simulation	
The	input	deck	used	solves	the	Noh	verification	
problem	for	ideal	gases		
I/O	is	handled	by	TyphonIO

12

Experimental	Setup
ARCHER	
- 4920	node	CRAY	XC30	
- Two	12-core	Ivy	Bridge	processors	per	node	
(118,080	cores	total)	

- Three	Lustre	filesystems:	
- 12	OSSs		
- 4	OSTs/OSS	
- 10	4TB	Discs/OST	(RAID6)	
- 1	MDS	+	1	MDT	with	14	600GB	discs	(RAID1+0)	
- 10	LNet	Router	nodes	with	overlapping	routing	
paths

13

Experimental	Setup:	Input	Parameters
Part	size	represents	the	
volume	of	data	written	
from	each	rank	
Wait	time	is	a	basic	time	
buffer	between	
consecutive	file	accesses

Nodes Part Size (Bytes) Wait Time (s)

1 404 320 266
2 202 205 120
4 101 148 53
8 50 619 22
16 25 355 11
32 12 723 7
64 6407 5

14

File	Access	Pattern
File	access	times	are	offset	
by	the	initial	setup	in	
Bookleaf	
Accounting	for	this	overhead	
is	not	necessary	to	
accurately	represent	the	I/O	
pattern	so	we	don’t	factor	it	
in,	but	this	could	easily	be	
introduced

MACSio 1

MACSio 2

0 50 100 150 200 250 300 350

Bookleaf 1

Bookleaf 2

Time (s)

15

Results:	I/O	Time

1 2 4 8 16 32 64

4

8

16

32

64

128

Nodes

T
i
m
e
(
s
)

MACSio #1

MACSio #2

Bookleaf #1

Bookleaf #2

1 2 4 8 16 32 64

64

512

4,090

32,700

262,000

Nodes

MACSio #1

MACSio #2

Bookleaf #1

Bookleaf #2

Cumulative	I/O	Time	across	all	ranksAbsolute	I/O	Time
17,000s	
1,536	ranks	

≈	110s	writing	
per	rank	

16

Results:	I/O	Time
Total,	cumulative	and	
slowest	individual	I/O	time	
remain	consistent	for	the	
original	and	replicated	runs	
Looking	at	a	wider	range	of	
Darshan	counters,	access	
sizes	and	frequencies	are	
also	consistent	

Slowest	Individual	MPIIO	Operation

1 2 4 8 16 32 64

0.5

1

2

4

8

16

32

64

Nodes

T
i
m
e
(
s
)

MACSio #1

MACSio #2

Bookleaf #1

Bookleaf #2

17

Results:	Testing	Independent	vs	Collective	I/O	with	MACSio

Using	the	MACSio	replication,	a	
parameter	tweak	can	be	used	to	
manipulate	I/O	library	
behaviour	
The	switch	to	use	collective	
buffering	has	a	very	predictable	
effect,	reducing	the	number	of	
small	write	operations	and	
lowering	the	overall	I/O	time	 1 2 4 8 16 32 64

0.5

2

8

32

128

Nodes

T
i
m
e
(
s
)

Collective #1

Collective #2

Independent #1

Independent #2

18

Conclusion
We	use	a	proxy	application	and	high	level	library	to	mimic	
an	I/O	pattern	based	off	as	lightweight	profiling	as	possible		
I/O	characterisation	and	a	small	amount	of	application	
familiarity	is	enough	to	produce	a	proxy	that	is	workable		
Once	a	parameter	set	has	been	identified,	we	can	chop	and	
change	strategy,	library	and	platform	with	a	reasonable	
amount	of	simplicity

19

Next	Steps
More	irregular	I/O	patterns	from	range	of	
applications	
Exercise	different	parallel	interfaces	
Multiple	concurrent	workloads	

20

Acknowledgements
UK	Atomic	Weapons	
Establishment	Technical	
Outreach	Programme	

UK	Engineering	and	Physical	
Sciences	Research	Council

Thank	You	
Any	Questions?		

J.Dickson@warwick.ac.uk

mailto:J.Dickson@warwick.ac.uk

