
SCTuner: An Autotuner Addressing Dynamic I/O
Needs on Supercomputer I/O Subsystems

Houjun Tang∗‡, Bing Xie∗†, Suren Byna‡, Philip Carns§, Quincey Koziol‡

Sudarsun Kannan¶ , Jay Lofstead‖ , Sarp Oral†
† Oak Ridge National Laboratory, ‡ Lawrence Berkeley National Laboratory, § Argonne National Laboratory

¶ Rutgers University, ‖ Sandia National Laboratories

Abstract—In high-performance computing (HPC), scientific
applications often manage a massive amount of data using
I/O libraries. These libraries provide convenient data model
abstractions, help ensure data portability, and, most important,
empower end users to improve I/O performance by tuning
configurations across multiple layers of the HPC I/O stack. We
propose SCTuner, an autotuner integrated within the I/O library
itself to dynamically tune both the I/O library and the underlying
I/O stack at application runtime. To this end, we introduce a
statistical benchmarking method to profile the behaviors of indi-
vidual supercomputer I/O subsystems with varied configurations
across I/O layers. We use the benchmarking results as the built-in
knowledge in SCTuner, implement an I/O pattern extractor, and
plan to implement an online performance tuner as the SCTuner
runtime. We conducted a benchmarking analysis on the Summit
supercomputer and its GPFS file system Alpine. The preliminary
results show that our method can effectively extract the consistent
I/O behaviors of the target system under production load,
building the base for I/O autotuning at application runtime.

I. INTRODUCTION

On high-performance computing (HPC) platforms, I/O sub-
systems are built around scientific applications. These appli-
cations may execute on hundreds of thousands of CPU/GPU
cores and analyze/generate tens of terabytes to several
petabytes of data periodically. Ranging from climate modeling
to drug discovery, the computation of scientific applications is
often forced to stall because of the increasing performance gap
between the computational speed in supercomputers and the
bandwidth capacity of their I/O subsystems. It is crucial for
software to make efficient use of I/O bandwidth and accelerate
application executions accordingly.

At HPC facilities, scientists usually manage data via I/O
libraries, such as HDF5 [1], ADIOS [2], and PnetCDF [3].
These libraries support a rich variety of data structures and
maneuver toward high throughput by tuning the parameters
across multiple I/O layers. For instance, HDF5 provides par-
allel I/O services via MPI-IO to leverage optimized interfaces
for parallel file systems (e.g., Lustre [4] and GPFS [5]).
Accordingly, HDF5 users can specify configurations for HDF5
internals (e.g., HDF5 metadata management), MPI-IO (e.g.,
through MPI Info object), and file systems (e.g., data layout
on Lustre) as well. Ideally, end users can obtain high I/O
throughput by tuning the multilayer configurations on their
own. In practice, because of a lack of expert knowledge,

∗Equal contribution.

most users simply rely on the I/O library defaults, which
typically select configurations based on heuristics rather than
perspectives from applications.

No unified I/O tuning framework at HPC scale exists that
can handle all critical requirements for performance optimiza-
tion, such as online tuning (i.e., during application runtime),
tune across layers of the complex HPC I/O stack, and dynam-
ically adapt to changing I/O needs and performance variations
of the target applications and file systems. As is shown in
Table I, prior HPC-scale I/O tuning efforts depend mainly on
static heuristics and techniques [6], [7] or offline information
characterized from benchmarking [8] and modeling [9], [10].
Some researchers [11] have collected the interactions between
applications and the underlying file systems at application run-
time and proposed an autotuner to optimize I/O across layers,
but the proposal was limited to optimized memory use of
file systems [12]. Another study [13] involved autotuning the
performance of HPC storage systems with neural networks, but
their use is still limited to small-scale systems. For I/O tuning
in enterprise datacenters, researchers [14], [15] have autotuned
the parameters in storage systems by sampling and reducing
tuning parameter greedily. Furthermore, Bhimani et al. [16]
employed reinforcement learning to autotune the parameters
of SSDs. These efforts devised I/O tuning frameworks to fine-
tune the performance of specific storage systems or devices,
but the frameworks lack the capability to address the dynamic
I/O needs of applications at runtime.

To overcome the limitations of prior solutions, we design
SCientific I/O Tuner (SCTuner), a generic solution to autotune
parameters across I/O layers transparently and dynamically.
At the heart of our solution, SCTuner realizes dynamic tuning
within I/O libraries in two steps. First, SCTuner introduces
a generic benchmarking method to profile the behaviors of
supercomputer I/O subsystems, with varied configurations
across I/O layers scaling up to thousands of cores, and
builds performance models in SCTuner based on the profiling
knowledge. Second, as part of SCTuner’s runtime, we extract
I/O patterns (e.g., number of nodes and cores in use, data
size per core) and their performance, adapt the models to the
observed performance variations, and determines the corre-
sponding configurations for the entire I/O stack.

SCTuner serves as the first step toward dynamic I/O auto-
tuning for HPC applications without requiring application



TABLE I: SCTuner vs. existing I/O autotuners.

I/O
Autotuner

HPC
Scale

Online
Tuning

Cross-layer.
Tuning

Dynamic
Optimization

SCTuner X X X X

[6], [7] X X

[8], [11], [9], H5Tuner [10] X X X

[12], CAPES [13] X X

[14], Carver [15],PatIO [16] X

changes. We implement SCTuner in HDF5 and apply our
benchmarking method on Summit and its GPFS file system
Alpine [17]. We present the results and analysis of our
benchmarking approach. We observed that the performance of
reads in the target environment is highly variable, suggesting
the necessities on a dynamic I/O tuner such as SCTuner. For
writes, some configurations obtain consistently high perfor-
mance, suggesting an effective I/O tuner can bring significant
performance improvement to applications.

In summary, we implemented an I/O pattern extractor in
HDF5 and plan to realize an online performance tuner in
HDF5 asynchronous I/O VOL connector [18] (discussed in
III-C). While our initial SCTuner prototype is implemented
and integrated with HDF5 for benchmarking and auto-tuning,
we believe that SCTuner can be easily applied to and integrated
into other HPC I/O libraries and file systems.

II. HPC I/O STACK

A. Scientific I/O in Production Codes

HPC platforms support a wide range of applications, includ-
ing traditional numerical simulations and deep neural network
(DNN) applications [19], [20], [21]. Scientists submit their
computational work as a batch job to utilize the compute
power of a supercomputer. These jobs often execute iterative
computations on CPUs/GPUs and process/produce data peri-
odically for resilience (checkpointing) and future data analysis
about the physics evolution models.

In general, applications perform I/O for different purposes
and with various I/O patterns. End users may execute a given
application in different jobs each with different computation
and I/O scales. For example, numerical simulations that solve a
fixed-space problem, such as XGC [22], execute the numerical
solver iteratively and process/produce equal-sized synchronous
bursts of I/O. XGC has four I/O patterns with three for
intermediate results (1 KB – 10 MB of data per core) and one
for checkpointing (100 MB – 1 GB of data per core) [23],
[24]. Moreover, machine learning and deep learning (DL)
applications are iterative and exhibit multiple I/O patterns for
staging, shuffling, and checkpointing. For example, a typical
DL training code runs on a group of GPU accelerators that
read equal-sized data, shuffle and read them periodically, and
produce writes for checkpointing and/or postprocessing based
on a preconfigured frequency. Across DNN models and I/O
scales, the typical I/O burst size per GPU can vary from several
kilobytes to several gigabytes.

Observation 1 . Different applications and I/O patterns exist
on supercomputers, exhibiting different I/O performance needs
at application runtime.

B. Supercomputer I/O Subsystems

Summit, the second fastest supercomputer in the world, is
housed at the Oak Ridge Leadership Computing Facility. It
consists of 4,608 compute nodes, each node containing 42
CPUs and 6 GPUs. Summit is connected to Alpine, the center-
wide GPFS file system, comprising 154 Network Shared Disk
(NSD) servers. Users have no control over data layout on
GPFS deployments, where the block size (GPFS block size)
per NSD is configured at file system creation time. For Alpine,
the block size is 16 MB.

Other parallel file systems (PFSes) such as Mira-FS [25] use
a smaller block size of 8 MB, and some PFSes (e.g., Lustre)
allow users to configure the number of storage targets (stripe
count) and the data size per target (stripe size). In general, as
concluded by prior studies [26], [27], [23], [28], [29], [24], all
PFSes show high performance variability, and the variability
can change over time [30]. m

At many HPC facilities, a burst buffer [31] is deployed
as another storage tier. Using node-local NVMe technology,
burst buffers create an independent file system for each job to
store its temporary data with high I/O bandwidth during job
execution time. Burst buffers at different facilities typically are
deployed with different storage technologies and are managed
by different file system software.
Observation 2 . Different file systems have different hard-
ware, are deployed with different file system software, and in
most cases are configured differently.

C. I/O Libraries in HPC

A key attribute of HPC I/O runtimes, in contrast to tra-
ditional datacenter I/O file systems and object stores, is
the flexibility in allowing applications to customize the data
structures that support data and metadata management, I/O
work, and data sharing policies across thousands of processes.
Consequently, flexible runtimes increase the complexity of
autotuning.

For instance, on HPC platforms, many scientists choose
HDF5, a self-describing file format and I/O library [1], to
manage their data because it provides flexibility, extendibility,
and portability. HDF5 realizes parallel I/O operations via
MPI-IO APIs. MPI-IO, in turn, uses POSIX-IO APIs to
communicate with the underlying supercomputer I/O storage
system. Within HDF5, end users can use either independent
MPI-IO calls or collective MPI-IO calls to process read/write
operations on their HDF5 files. Once they choose to use
collective I/O, they can further determine the relative MPI-IO
configurations, such as the number of read/write aggregators
and the buffer size per aggregator. Moreover, HDF5 provides
APIs to let users configure their data layout on PFSes such as
Lustre and BeeGFS [32].

In general, a typical HPC I/O library serves as a higher-level
abstraction and provides uniform I/O interfaces for various

2



data structures. It allows end users to set their own config-
urations on the I/O layers via the library-specific interfaces.
Unfortunately, because of a lack of I/O knowledge, end users
of these libraries usually choose the default configurations that
are determined by simple heuristics and that usually fail to
address dynamic I/O patterns and performance needs across
times.
Observation 3 . HPC systems empower end users to config-
ure and customize different layers of I/O stack. However, most
users stick to the default configurations, which can result in
far-from-ideal I/O performance.

D. Related Work
In HPC, the deeper software and hardware I/O stack,

combined with a rich set of I/O libraries such as HDF5 [1],
ADIOS [2], and PnetCDF [3] that rely on MPI-IO and POSIX-
IO, complicates I/O tuning. Prior work [7] evaluated the setting
of several HDF5 tuning parameters, such as chunked dataset
alignment and metadata flush configurations with the Lustre
file system. Other studies explored tuning I/O parameters using
genetic algorithms and performance modeling [8], [9], [10].
On the MPI-IO level, collective I/O [33], [34] allows users
to provide a set of hints that inform the library regarding the
access patterns for runtime optimization. Additionally, Lustre
allows users to customize their file layout on storage devices
with the striping parameters setting. Several researchers [35],
[27], [36], [28] found that properly setting striping parameters
result in multifold performance improvements.

While these approaches focus on optimizing specific I/O
workloads, they demand I/O expertise from users, scientists,
and developers. In contrast, our work—SCTuner—uses a
benchmarking method to systematically profile the perfor-
mance for various access patterns and use the gained knowl-
edge to tune parameters automatically, without user input.
Further, unlike prior work for data-centric storage [15], [14],
our work is focused on an extreme scale.

III. AUTOTUNING I/O IN HPC
Shown in Figure 1, SCTuner is an autotuner for scientific

I/O on production supercomputers. Motivated by the diverse
I/O patterns in the target applications (Obs. 1 ) and the
great disparity in the target systems (Obs. 2 ), we conduct
I/O benchmarks for target I/O subsystems. Leveraging the
benchmarking results, we integrate SCTuner into HPC I/O
libraries, since they generally support parameter configurations
across layers in the HPC I/O stack (Obs. 3 ). We use the
benchmarking results to build performance models. We extract
I/O patterns and performance variations at application runtime,
and we use this information to adapt the models and determine
the best values of the tuning parameters.

As an example to demonstrate SCTuner’s functionalities
we realized our benchmarking method and developed the I/O
pattern extractor in HDF5 and applied it on Summit’s I/O
subsystem. The preliminary results show that our proposed
benchmarking method can effectively identify consistently
good configurations in a highly variable production environ-
ment. Although SCTuner is currently integrated in HDF5 and

tested on Summit and Alpine, we believe our benchmarking
method and the SCTuner runtime can be easily applied to other
HPC I/O libraries and other supercomputer I/O subsystems.

A. A Statistical I/O Benchmarking Method
Design Principles: We follow three design principles. (1) To
address the dissimilarity in the target systems, we design
benchmarking experiments to profile the I/O behaviors of
individual systems. (2) To address I/O patterns presented in
scientific codes, we use IOR [37]) as an I/O pattern generator
that covers a wide range of burst sizes and I/O scales. (3) To
capture consistent behaviors from noise and randomness, we
repeat the experiments and characterize the results by a
five-number summary [38] and clustering.

1) I/O benchmarking

For an I/O library on a given I/O subsystem, we design a
group of controlled experiments, each exercising IOR with an
I/O pattern and a set of tuning parameters across I/O layers.

To achieve a low core-hour consumption and low impact
on production systems, we perform the experiments on small
to medium scales (2–1344 cores) since they can effectively
reflect the large-scale behaviors [23], [24]. To attain good
coverage on burst sizes, we strategically choose burst-size
ranges and randomly produce bursts in each chosen range.
We consider bursts in a wide range: 1 KB – 4 GB aggregate
data per node. To guarantee balanced burst-size coverage, we
break it into 6 ranges (Column 3 in Table II) and generate
20 random burst sizes for each range. Similarly, for each I/O
scale, we randomly choose the number of cores per node
(Column 2 in Table II). For HDF5 on Summit/Alpine, the
configurable layer is MPI-IO. We alternate the configurations
between independent I/O and collective I/O and further vary
the values of the collective I/O parameters. Columns 4 and 5
in Table II address the collective I/O configurations in detail.
In general, we choose the burst-size range and the values for
collective I/O parameters in consideration of production use
[23], [29], [24] and Alpine’s GPFS block size setting (16 MB).

We submit the experiments as regular supercomputer jobs.
After a job starts, it reads a job description file, which specifies
the IOR executions for a specific burst size and a specific
number of nodes/cores in use with a multilevel for loop. Each
loop varies the values of an IOR parameter on an I/O layer.
We submit each such job many times and execute them one
at a time to avoid self-interference.

Each job includes a number of IOR executions for one I/O
pattern across the same set of varying configurations. Each
execution simulates a typical I/O pattern: in an execution,
the synchronous processes read/write a single shared file. In
particular, a number of benchmark processes each issue a
file open, a read or write system call, and a file close in a
sequence. The processes are synchronized with MPI barriers
before file open and after file close. To avoid read/write-cache
effects, each job executes only one read or one write for an I/O
pattern across the entire I/O configuration settings. We collect
the end-to-end performance from the minimum of file open to
the maximum of file close among the bursts.

3



Fig. 1: Key components of SCTuner integrated into HPC I/O libraries

2) Statistical analysis

For each IOR execution, we normalize its performance to
the best observed from the I/O pattern and accordingly get
a relative performance measure in 0–1 for the associated
configuration. Clearly, a higher measure suggests a better
performance delivered by the configuration. We execute each
configuration on each experiment repeatedly, normalize the
performance of the repeated IOR executions, and characterize
the normalized repetitions using a five-number summary (the
minimum, lower quartile, median value, upper quartile, maxi-
mum). We use hierarchical clustering to group the five-number
summaries across scales, I/O patterns, and configurations.

B. SCTuner Runtime
The SCTuner runtime includes three major components:

performance models, an I/O pattern extractor, and a perfor-
mance tuner. Here, each model is built on the benchmarking
results of a supercomputer I/O subsystem.

We implement the I/O pattern extractor in HDF5. In par-
ticular, when a file is opened for the first time, we extract
the information about the I/O patterns (e.g., the number
of compute nodes in use, the number of MPI ranks, the
configuration of the underlying file system). When a parallel
I/O call is issued, we extract the per-rank burst size and the
starting offset of each burst, as well as the aggregate data size.
When an I/O call completes, the extractor also collects the
performance related information and passes the information to
the performance tuner. In particular, for an I/O read call, the
completion means the data is fetched to the client’s memory
(in compute node) of the file system; for an I/O write call,
the completion indicates the data is committed to the storage
system disks.

To address the performance variability in the target envi-
ronment, the tuner adapts the model to the observed online
performance data. Online performance modeling (e.g., online
gradient descent [39]) has been used in dynamic resource
management in the cloud [40]. In this work we plan to use
similar techniques to address I/O performance variations at
application runtime. Moreover, when receiving an I/O call,
the tuner executes the updated model with the collected I/O
pattern and sets parameters across I/O layers accordingly.

C. Dynamic Parameter Setting
Similar to other HPC I/O libraries, HDF5 provides

APIs to let end users tune the parameters across the

TABLE II: Varying parameters in benchmarking experiments.

#nodes
(m)

Cores per
Node (n)

Burst Size (K) Aggregators (na) Buffer Size (BS)

2, 4, 8, 16,
32

1—42 1KB—4MB, 4MB—
16MB, 16MB—64MB,
64MB—256MB,
256MB—1GB, 1GB—
4GB

1
4
n, 1

2
n, n, 2n, 4n 1M, 4M, 16M,

64M, 256M

I/O software stack. For example, H5Pset_mdc_config
allows deferring the HDF5 metadata cache flush until
file close time, H5Pset_coll_metadata_write enables
collective I/O for HDF5 metadata read and write, and
H5Pset_fapl_mpio and MPI_Info_set support the set-
tings on MPI-IO.

Dynamic parameter setting is challenging because many
of the tuning parameters in MPI-IO must be set before the
file open. Without the user’s input, we have no knowledge
of the future I/O patterns at the parameter setting time. To
address this issue, we build the tuning function on HDF5
asynchronous I/O VOL connector (async VOL) [18], [41], in
which I/O operations are queued and executed asynchronously.
In other words, with async VOL, we delay the execution on file
open until we know the exact I/O operations on the exact I/O
patterns. Another challenge comes from the dynamic nature
of scientific I/O. As discussed in §II-A, a typical scientific
code performs I/O by following several I/O patterns, and each
may benefit from different configurations. To address this
dynamism, we may take a close-reopen approach to change
the values of tuning parameters if we see that the reset obtains
performance gain.

IV. PRELIMINARY RESULTS

We present the results collected from Summit (§II-B). We
plan to integrate such results from each specific I/O subsystem
into SCTuner to build performance models and dynamically
tune the parameters across I/O layers at application runtime.

A. Experiment Setup
We generate I/O patterns and the values of configurable pa-

rameters by following the benchmarking method in (§III-A1).
Table II reports the varying parameters and values in detail.

For each I/O scale, we generate 120 I/O patterns across
compute cores and burst sizes and use each pattern to bench-
mark both read and write operations. For each I/O pattern,
we perform IOR with 27 MPI-IO configurations, including
independent I/O, the default collective I/O configuration on
Summit, and the 25 specified configurations given in Table II
based on our prior work [17]. Across scales, we collected over-
all 12,960 (4x120x27) benchmarking measures. Each measure
is a five-number summary characterized from 9 to 12 repeated
IOR executions for a specific MPI-IO configuration on a
specific I/O pattern.

B. Clustering Results
Figures 2(a) and 2(d) report the dendrograms of hierarchical

clustering with agglomerative (bottom-up clustering) for the
five-point summary values. We determine the number of
clusters using two commonly used metrics: Ward’s linkage
and Euclidean distance. In summary, we identified 6 clusters
for read and 5 clusters for write.

4



(a) Dendrogram for read (b) Clustered five-number summary for read (c) Write performance for na =8, BK=16MB on
32 compute nodes

(d) Dendrogram for write (e) Clustered five-number summary for write (f) Write performance for na =128, BK=16MB
on 32 compute nodes

Fig. 2: Result Summary for the Statistical Benchmarking Method. In Figures 2(c) and 2(f), the x-axis is sorted based on the aggregate data size of an I/O
pattern; the y-axis represents the cluster of a pattern.

Figures 2(b) and 2(e) report the read and write performance
of individual five-number summaries, each associated with a
specific parameter set, pattern, and scale. In the two figures,
a line represents the minimum values, or lower quartile, or
median value, or upper quartile, or maximum values. We sort
the clusters first based on the mean value and then further sort
the measures within a cluster based on their maximum values.

Based on Figures 2(b) and 2(e), we summarize the obser-
vations in three points: (1) For both read and write, certain
MPI-IO configurations consistently deliver poor performance.
In particular, in clusters 0 and 1, the maximum values are
<57% (for read) and <61% (for write) of the peak band-
widths, respectively. (2) For read, the performance of the
target environment is highly variable. For any configuration
on any I/O pattern, the read performance varies in a wide
range, 7–100% of the peak, suggesting the need for a dynamic
I/O tuner such as SCTuner. (3) For write, some configu-
rations obtain consistently high performance. In clusters 3
and 4, the minimum values are >36% and >42% of the
peak performance (observed maximum I/O throughput for all
experiments). These results also suggest that our method can
identify the behaviors of consistently good I/O configurations
for an HPC system that is useful for runtime configuration.

C. Configuration Results

Because of the space limitation, we show the effectiveness
of our method using the results of only two configurations.
Figures 2(c) and 2(f) report the clustering results for write on
32 compute nodes, configured with a 16 MB buffer size per

aggregator, and using 8 aggregators and 128 aggregators. We
choose these two configurations because they show clearly that
different I/O patterns benefit from different configurations.

In particular, for small writes in the range of 11.81 MB –
2.23 GB, when using 8 aggregators, 92.6% of the I/O pat-
terns are categorized into clusters 3 and 4 (high-performance
clusters), and for larger writes (>2.23 GB) the same con-
figuration performs poorly with no measure in clusters 3
or 4. On the contrary, when using 128 aggregators on the
large writes (>2.23 GB), only one measure falls in cluster 2
(low-performance cluster). Clearly, small writes benefit from
aggressive I/O aggregation since it results in larger writes and
is more efficient. On the other hand, large writes benefit from
independent I/O since they can obtain efficient use of I/O
bandwidth. Undoubtedly, this information is useful for tuning
the I/O configurations at runtime.

V. CONCLUSION

This work proposes SCTuner, an autotuner built in I/O
libaries to tune I/O parameters at runtime. To this end, we
introduce a statistical benchmarking method to profile the
behaviors of individual supercomputer I/O subsystems. We im-
plemented the runtime I/O pattern extractor and plan to realize
performance models and the online performance tuner in the
near future. We conducted benchmarking experiments on the
Summit supercomputer and its GPFS file system Alpine. The
results show that our benchmarking method can effectively
extract consistent I/O behaviors of the target systems.

5



ACKNOWLEDGMENT
This research is supported by the Director, Office of Sci-

ence, Office of Advanced Scientific Computing Research, of
the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This work was supported by the U.S. Department
of Energy, Office of Science, Advanced Scientific Computing
Research, under Contract DE-AC02-06CH11357. This work
used resources of the Oak Ridge Leadership Computing Facil-
ity at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725. Sandia National
Laboratories is a multimission laboratory managed and op-
erated by National Technology and Engineering Solutions
of Sandia, LLC, a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-
NA0003525 (SAND2021-12186 C). Sudarsun Kannan was
partially supported by NSF CNS 1850297 award. This ma-
terial is based upon work supported by the U.S. Department
of Energy , Office of Science, under contract DE-AC02-
06CH11357.

REFERENCES
[1] The HDF Group, “HDF5,” https://www.hdfgroup.org/solutions/hdf5/.
[2] ADIOS team at ORNL, “The Adaptable I/O System,” https://csmd.ornl.

gov/adios.
[3] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,

R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF:
A high-performance scientific I/O interface,” in SC, 2003, pp. 39–39.

[4] P. Braam, “The Lustre storage architecture,” arXiv preprint
arXiv:1903.01955, 2019.

[5] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters,” in FAST, vol. 2, no. 19, 2002.

[6] S. Byna, M. Chaarawi, Q. Koziol, J. Mainzer, and F. Willmore, “Tuning
HDF5 subfiling performance on parallel file systems,” CUG, 2017.

[7] M. Howison, “Tuning HDF5 for Lustre File Systems,” IASDS, 2010.
[8] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,

Q. Koziol, and M. Snir, “Taming parallel I/O complexity with auto-
tuning,” in SC, 2013.

[9] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and M. Snir, “Improving
parallel I/O autotuning with performance modeling,” in HPDC, 2014,
pp. 253–256.

[10] B. Behzad, S. Byna, and M. Snir, “Optimizing I/O performance of
HPC applications with autotuning,” ACM Transactions on Parallel
Computing, vol. 5, no. 4, pp. 1–27, 2019.

[11] S. J. Kim, S. W. Son, W.-k. Liao, M. Kandemir, R. Thakur, and
A. Choudhary, “IOPin: Runtime profiling of parallel I/O in HPC
systems,” in 2012 SC Companion: High Performance Computing, Net-
working Storage and Analysis PDSW’12. IEEE, 2012, pp. 18–23.

[12] N. Watkins, Z. Jia, G. Shipman, C. Maltzahn, A. Aiken, and P. Mc-
Cormick, “Automatic and transparent I/O optimization with storage
integrated application runtime support,” in PDSW’15, 2015, pp. 49–54.

[13] L. Yan, K. Chang, O. Bel, E. L. Miller, and D. D. Long, “CAPES:
Unsupervised storage performance tuning using neural network-based
deep reinforcement learning,” in SC, 2017.

[14] C. Zhen, V. Tarasov, S. Tiwari, and E. Zadok, “Towards better under-
standing of black-box auto-tuning: A comparative analysis for storage
systems,” in USENIX Annual Technical Conference (ATC’18), 2018.

[15] C. Zhen, G. Kuenning, and E. Zadok, “Carver: Finding important
parameters for storage system tuning,” in USENIX Conference on File
and Storage Technologies (FAST’20), 2020.

[16] J. Bhimani, A. Maruf, N. Mi, R. Pandurangan, and V. Balakrishnan,
“Auto-tuning parameters for emerging multi-stream flash-based storage
drives through new I/O pattern generations,” IEEE Transactions on
Computers, 2020.

[17] B. Xie, H. Tang, S. Byna, J. Hanley, Q. Koziol, T. Li, and S. Oral,
“Battle of the defaults: Extracting performance characteristics of HDF5
under production load,” in CCGrid 2021. IEEE, 2021, pp. 51–60.

[18] H. Tang, Q. Koziol, S. Byna, J. Mainzer, and T. Li, “Enabling transparent
asynchronous I/O using background threads,” in PDSW’2019.

[19] J. Kates-Harbeck, A. Svyatkovskiy, and W. Tang, “Predicting disruptive
instabilities in controlled fusion plasmas through deep learning,” Nature,
vol. 568, no. 7753, pp. 526–531, 2019.

[20] B. Maldonado Puente, B. Kaul, C. Schuman, S. Young, and P. Mitchell,
“Dilute combustion control using spiking neural networks,” SAE Tech-
nical Paper Series, vol. 2021, no. 01, 2021.

[21] R. M. Patton, J. T. Johnston, S. R. Young, C. D. Schuman, T. E. Potok,
D. C. Rose, S.-H. Lim, J. Chae, L. Hou, S. Abousamra et al., “Exascale
deep learning to accelerate cancer research,” in 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 2019, pp. 1488–1496.

[22] G. Bateman, S.-H. Ku, J. Cummings, C.-S. Chang, and A. Kritz, “Xgc
documentation,” http://w3.physics.lehigh.edu/xgc/, 2016.

[23] B. Xie, Y. Huang, J. Chase, J. Y. Choi, S. Klasky, J. Lofstead, and
S. Oral, “Predicting output performance of a petascale supercomputer,”
in HPDC’17, 2017.

[24] B. Xie, Z. Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral,
S. S. Vazhkudai, and F. Wang, “Interpreting write performance of
supercomputer I/O systems with regression models,” in IPDPS’21, 2021.

[25] K. Kumaran, “Introduction to Mira,” in Code for Q Workshop, 2016.
[26] J. F. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. A. Oldfield,

T. Kordenbrock, K. Schwan, and M. Wolf, “Managing variability in
the IO performance of petascale storage systems,” in Conference on
High Performance Computing Networking, Storage and Analysis, SC
2010, New Orleans, LA, USA, November 13-19, 2010. IEEE, 2010,
pp. 1–12. [Online]. Available: https://doi.org/10.1109/SC.2010.32

[27] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,”
in SC, 2012.

[28] B. Xie, S. Oral, C. Zimmer, J. Y. Choi, D. Dillow, S. Klasky, J. Lofstead,
N. Podhorszki, and J. S. Chase, “Characterizing output bottlenecks of a
production supercomputer: Analysis and implications,” ACM Transac-
tions on Storage, 2020.

[29] B. Xie, Z. Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral,
S. Vazhkudai, and F. Wang, “Applying machine learning to understand
write performance of large-scale parallel filesystems,” in PDSW, 2019.

[30] G. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. Wright,
“A year in the life of a parallel file system,” in International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC’18), 2018.

[31] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P. Tzelnic, and
J. Woodring, “Jitter-free co-processing on a prototype exascale storage
stack,” in 2012 IEEE 28th Symposium on Mass Storage Systems and
Technologies (MSST), 2012, pp. 1–5.

[32] B. team, “BeeGFS:the leading parallel file system,” https://www.beegfs.
io/c/, 2021.

[33] W.-k. Liao and A. Choudhary, “Dynamically adapting file domain
partitioning methods for collective I/O based on underlying parallel file
system locking protocols,” in SC, 2008, pp. 1–12.

[34] Y. Chen, X.-H. Sun, R. Thakur, P. C. Roth, and W. D. Gropp, “LACIO:
A new collective I/O strategy for parallel I/O systems,” in 2011 IEEE
International Parallel & Distributed Processing Symposium, 2011, pp.
794–804.

[35] W. Yu, J. S. Vetter, and H. S. Oral, “Performance characterization and
optimization of parallel I/O on the Cray XT,” in IPDPS, 2008, pp. 1–11.

[36] S. Byna, R. Sisneros, K. Chadalavada, and Q. Koziol, “Tuning parallel
I/O on Blue Waters for writing 10 trillion particles,” CUG, 2015.

[37] “HPC IO Benchmark Repository,” https://github.com/hpc/ior.
[38] D. Hoaglin, F. Mosteller, and J. Tukey, Understanding robust and

exploratory data analysis, 2000, no. Sirsi) i9780471384915.
[39] Y. Ying and M. Pontil, “Online gradient descent learning algorithms,”

Foundations of Computational Mathematics, vol. 8, no. 5, pp. 561–596,
2008.

[40] B. Xie, Q. Cao, M. Kunjir, L. Wan, J. Chase, A. Mandal, and M. Rynge,
“WIRE: Resource-efficient scaling with online prediction for DAG-
based workflows,” in IEEE Cluster 2021. IEEE, 2021, pp. 1–10.

[41] H. Tang, Q. Koziol, S. Byna, and J. Ravi, “Transparent asynchronous
parallel i/o using background threads,” IEEE Transactions on Parallel
and Distributed Systems, pp. 1–1, 2021.

6

https://www.hdfgroup.org/solutions/hdf5/
https://csmd.ornl.gov/adios
https://csmd.ornl.gov/adios
http://w3.physics.lehigh.edu/xgc/
https://doi.org/10.1109/SC.2010.32
https://www.beegfs.io/c/
https://www.beegfs.io/c/
https://github.com/hpc/ior

	Introduction
	HPC I/O Stack
	Scientific I/O in Production Codes
	Supercomputer I/O Subsystems
	I/O Libraries in HPC
	Related Work

	Autotuning I/O in HPC
	A Statistical I/O Benchmarking Method
	I/O benchmarking
	Statistical analysis

	SCTuner Runtime
	Dynamic Parameter Setting

	Preliminary Results
	Experiment Setup
	Clustering Results
	Configuration Results

	Conclusion
	References

